Organized by Xiao-Li Li, See-Kiong Ng and Jason T. L. Wang
08:30 - 17:40
Room: Permeke
http://www1.i2r.a-star.edu.sg/~xlli/BioDM.html
In this BioDM workshop, we address the challenging issues in various biological and healthcare data analysis. The workshop, held in Brussels Belgium on December 10 2012, has garnered great response from the researchers and received a total of 29 paper submissions (16 workshop submissions; 13 transferred main conference submissions), out of which 14 (48.3%) were selected for presentation at the workshop. We would like to thank all the authors who have submitted their papers on many exciting and important research topics. We also thank the presenters of the accepted papers. Last but not least, we thank all the workshop participants for attending this third workshop in Brussels Belgium. It is our hope that the workshop will provide a lasting platform for disseminating the latest research results and practice of the data mining approaches in biology and healthcare.
08:30 - 08:50 | Welcoming and Introduction Xiao-Li Li |
} elseif($paper->event_type == 2) {?>
08:30 - 08:50 | Welcoming and Introduction Xiao-Li Li |
} elseif($paper->event_type == 3) {?>
08:30 - 08:50 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>08:30 - 08:50 | Welcoming and Introduction Xiao-Li Li |
} ?>
|
08:50 - 09:40 | Invited Talk: Modeling complex diseases using discriminative network fragments Ambuj Singh, University of California at Santa Barbara |
} elseif($paper->event_type == 2) {?>
08:50 - 09:40 | Invited Talk: Modeling complex diseases using discriminative network fragments Ambuj Singh, University of California at Santa Barbara |
} elseif($paper->event_type == 3) {?>
08:50 - 09:40 | Invited Talk: Modeling complex diseases using discriminative network fragments | } elseif($paper->event_type == 4) {?>Invited Talk: Modeling complex diseases using discriminative network fragments | } elseif($paper->event_type == 5) {?>08:50 - 09:40 | Invited Talk: Modeling complex diseases using discriminative network fragments Ambuj Singh, University of California at Santa Barbara |
} ?>
|
09:40 - 12:30 | Morning Session: Classification, Decision making, Visualization |
} elseif($paper->event_type == 2) {?>
09:40 - 12:30 | Morning Session: Classification, Decision making, Visualization |
} elseif($paper->event_type == 3) {?>
09:40 - 12:30 | Morning Session: Classification, Decision making, Visualization | } elseif($paper->event_type == 4) {?>Morning Session: Classification, Decision making, Visualization | } elseif($paper->event_type == 5) {?>09:40 - 12:30 | Morning Session: Classification, Decision making, Visualization |
} ?>
|
09:40 - 10:00 | Adapting Surgical Models to Individual Hospitals using Transfer Learning Gyemin Lee, Ilan Rubinfeld, and Zeeshan Syed |
} elseif($paper->event_type == 2) {?>
09:40 - 10:00 | Adapting Surgical Models to Individual Hospitals using Transfer Learning Gyemin Lee, Ilan Rubinfeld, and Zeeshan Syed |
} elseif($paper->event_type == 3) {?>
09:40 - 10:00 | Adapting Surgical Models to Individual Hospitals using Transfer Learning | } elseif($paper->event_type == 4) {?>Adapting Surgical Models to Individual Hospitals using Transfer Learning | } elseif($paper->event_type == 5) {?>09:40 - 10:00 | Adapting Surgical Models to Individual Hospitals using Transfer Learning Gyemin Lee, Ilan Rubinfeld, and Zeeshan Syed |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 10:50 | Mining medical data to develop clinical decision making tools in hemodialysis - Prediction of cardiovascular events in incident hemodialysis patients: Jasmine Ion Titapiccolo, Manuela Ferrario, Maria Gabriella Signorini, Sergio Cerutti, Carlo Barbieri, Flavio Mari, and Emanuele Gatti |
} elseif($paper->event_type == 2) {?>
10:30 - 10:50 | Mining medical data to develop clinical decision making tools in hemodialysis - Prediction of cardiovascular events in incident hemodialysis patients: Jasmine Ion Titapiccolo, Manuela Ferrario, Maria Gabriella Signorini, Sergio Cerutti, Carlo Barbieri, Flavio Mari, and Emanuele Gatti |
} elseif($paper->event_type == 3) {?>
10:30 - 10:50 | Mining medical data to develop clinical decision making tools in hemodialysis - Prediction of cardiovascular events in incident hemodialysis patients: | } elseif($paper->event_type == 4) {?>Mining medical data to develop clinical decision making tools in hemodialysis - Prediction of cardiovascular events in incident hemodialysis patients: | } elseif($paper->event_type == 5) {?>10:30 - 10:50 | Mining medical data to develop clinical decision making tools in hemodialysis - Prediction of cardiovascular events in incident hemodialysis patients: Jasmine Ion Titapiccolo, Manuela Ferrario, Maria Gabriella Signorini, Sergio Cerutti, Carlo Barbieri, Flavio Mari, and Emanuele Gatti |
} ?>
|
10:50 - 11:10 | Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair Brigida Monica Faria |
} elseif($paper->event_type == 2) {?>
10:50 - 11:10 | Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair Brigida Monica Faria |
} elseif($paper->event_type == 3) {?>
10:50 - 11:10 | Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair | } elseif($paper->event_type == 4) {?>Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair | } elseif($paper->event_type == 5) {?>10:50 - 11:10 | Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair Brigida Monica Faria |
} ?>
|
11:10 - 11:30 | Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms Roohallah Alizadehsani, Mohammad Javad Hosseini, Zahra Alizadeh Sani, Asma Ghandeharioun, and Reihane Boghrati |
} elseif($paper->event_type == 2) {?>
11:10 - 11:30 | Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms Roohallah Alizadehsani, Mohammad Javad Hosseini, Zahra Alizadeh Sani, Asma Ghandeharioun, and Reihane Boghrati |
} elseif($paper->event_type == 3) {?>
11:10 - 11:30 | Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms | } elseif($paper->event_type == 4) {?>Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms | } elseif($paper->event_type == 5) {?>11:10 - 11:30 | Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms Roohallah Alizadehsani, Mohammad Javad Hosseini, Zahra Alizadeh Sani, Asma Ghandeharioun, and Reihane Boghrati |
} ?>
|
11:30 - 11:50 | Evidence Theory-based Approach for Epileptic Seizure Detection Abduljalil Mohamed, Khaled Shaban, and Amr Mohamed |
} elseif($paper->event_type == 2) {?>
11:30 - 11:50 | Evidence Theory-based Approach for Epileptic Seizure Detection Abduljalil Mohamed, Khaled Shaban, and Amr Mohamed |
} elseif($paper->event_type == 3) {?>
11:30 - 11:50 | Evidence Theory-based Approach for Epileptic Seizure Detection | } elseif($paper->event_type == 4) {?>Evidence Theory-based Approach for Epileptic Seizure Detection | } elseif($paper->event_type == 5) {?>11:30 - 11:50 | Evidence Theory-based Approach for Epileptic Seizure Detection Abduljalil Mohamed, Khaled Shaban, and Amr Mohamed |
} ?>
|
11:50 - 12:10 | Predicting Hospital Length of Stay (PHLOS) : A Multi-Tiered Data Mining approach Ali Azari, Vandana P. Janeja, and Alex Mohseni |
} elseif($paper->event_type == 2) {?>
11:50 - 12:10 | Predicting Hospital Length of Stay (PHLOS) : A Multi-Tiered Data Mining approach Ali Azari, Vandana P. Janeja, and Alex Mohseni |
} elseif($paper->event_type == 3) {?>
11:50 - 12:10 | Predicting Hospital Length of Stay (PHLOS) : A Multi-Tiered Data Mining approach | } elseif($paper->event_type == 4) {?>Predicting Hospital Length of Stay (PHLOS) : A Multi-Tiered Data Mining approach | } elseif($paper->event_type == 5) {?>11:50 - 12:10 | Predicting Hospital Length of Stay (PHLOS) : A Multi-Tiered Data Mining approach Ali Azari, Vandana P. Janeja, and Alex Mohseni |
} ?>
|
12:10 - 12:30 | Using perspective wall to visualize medical data in the Intensive Care Unit Hela LTIFI, Mounir Ben Ayed, Ghada Trabelsi, and M. Adel ALIMI |
} elseif($paper->event_type == 2) {?>
12:10 - 12:30 | Using perspective wall to visualize medical data in the Intensive Care Unit Hela LTIFI, Mounir Ben Ayed, Ghada Trabelsi, and M. Adel ALIMI |
} elseif($paper->event_type == 3) {?>
12:10 - 12:30 | Using perspective wall to visualize medical data in the Intensive Care Unit | } elseif($paper->event_type == 4) {?>Using perspective wall to visualize medical data in the Intensive Care Unit | } elseif($paper->event_type == 5) {?>12:10 - 12:30 | Using perspective wall to visualize medical data in the Intensive Care Unit Hela LTIFI, Mounir Ben Ayed, Ghada Trabelsi, and M. Adel ALIMI |
} ?>
|
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:30 - 14:00 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:30 - 14:00 | Lunch Break |
} ?>
|
14:00 - 14:50 | Invited Talk: Perspectives of feature selection in bioinformatics: from relevance to causal inference Bontempi Gianluca, Université Libre de Bruxelles |
} elseif($paper->event_type == 2) {?>
14:00 - 14:50 | Invited Talk: Perspectives of feature selection in bioinformatics: from relevance to causal inference Bontempi Gianluca, Université Libre de Bruxelles |
} elseif($paper->event_type == 3) {?>
14:00 - 14:50 | Invited Talk: Perspectives of feature selection in bioinformatics: from relevance to causal inference | } elseif($paper->event_type == 4) {?>Invited Talk: Perspectives of feature selection in bioinformatics: from relevance to causal inference | } elseif($paper->event_type == 5) {?>14:00 - 14:50 | Invited Talk: Perspectives of feature selection in bioinformatics: from relevance to causal inference Bontempi Gianluca, Université Libre de Bruxelles |
} ?>
|
14:50 - 17:40 | Afternoon Session: Feature selection, Clustering, Data fusion, Retrieval, Graph mining |
} elseif($paper->event_type == 2) {?>
14:50 - 17:40 | Afternoon Session: Feature selection, Clustering, Data fusion, Retrieval, Graph mining |
} elseif($paper->event_type == 3) {?>
14:50 - 17:40 | Afternoon Session: Feature selection, Clustering, Data fusion, Retrieval, Graph mining | } elseif($paper->event_type == 4) {?>Afternoon Session: Feature selection, Clustering, Data fusion, Retrieval, Graph mining | } elseif($paper->event_type == 5) {?>14:50 - 17:40 | Afternoon Session: Feature selection, Clustering, Data fusion, Retrieval, Graph mining |
} ?>
|
14:50 - 15:10 | Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomarkers in Metabolomics Evrim Acar, Gozde Gurdeniz, Morten A. Rasmussen, Daniela Rago, Lars O. Dragsted, and Rasmus Bro |
} elseif($paper->event_type == 2) {?>
14:50 - 15:10 | Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomarkers in Metabolomics Evrim Acar, Gozde Gurdeniz, Morten A. Rasmussen, Daniela Rago, Lars O. Dragsted, and Rasmus Bro |
} elseif($paper->event_type == 3) {?>
14:50 - 15:10 | Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomarkers in Metabolomics | } elseif($paper->event_type == 4) {?>Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomarkers in Metabolomics | } elseif($paper->event_type == 5) {?>14:50 - 15:10 | Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomarkers in Metabolomics Evrim Acar, Gozde Gurdeniz, Morten A. Rasmussen, Daniela Rago, Lars O. Dragsted, and Rasmus Bro |
} ?>
|
15:10 - 15:30 | Clustering Tandem Repeats Via Trinucleotides Yupu Liang, Dina Sokol, and Sarah Zelikovitz |
} elseif($paper->event_type == 2) {?>
15:10 - 15:30 | Clustering Tandem Repeats Via Trinucleotides Yupu Liang, Dina Sokol, and Sarah Zelikovitz |
} elseif($paper->event_type == 3) {?>
15:10 - 15:30 | Clustering Tandem Repeats Via Trinucleotides | } elseif($paper->event_type == 4) {?>Clustering Tandem Repeats Via Trinucleotides | } elseif($paper->event_type == 5) {?>15:10 - 15:30 | Clustering Tandem Repeats Via Trinucleotides Yupu Liang, Dina Sokol, and Sarah Zelikovitz |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 16:20 | Evaluation of Feature Ranking Ensembles for High-Dimensional Biomedical Data: A Case Study Ludmila Kuncheva, Christopher Smith, Yasir Syed, Christopher Phillips, and Keir Lewis |
} elseif($paper->event_type == 2) {?>
16:00 - 16:20 | Evaluation of Feature Ranking Ensembles for High-Dimensional Biomedical Data: A Case Study Ludmila Kuncheva, Christopher Smith, Yasir Syed, Christopher Phillips, and Keir Lewis |
} elseif($paper->event_type == 3) {?>
16:00 - 16:20 | Evaluation of Feature Ranking Ensembles for High-Dimensional Biomedical Data: A Case Study | } elseif($paper->event_type == 4) {?>Evaluation of Feature Ranking Ensembles for High-Dimensional Biomedical Data: A Case Study | } elseif($paper->event_type == 5) {?>16:00 - 16:20 | Evaluation of Feature Ranking Ensembles for High-Dimensional Biomedical Data: A Case Study Ludmila Kuncheva, Christopher Smith, Yasir Syed, Christopher Phillips, and Keir Lewis |
} ?>
|
16:20 - 16:40 | Improved Feature Selection by Incorporating Gene Similarity into the LASSO Christopher Gillies, Xiaoli Gao, Nilesh Patel, Mohammad Siadat, and George Wilson |
} elseif($paper->event_type == 2) {?>
16:20 - 16:40 | Improved Feature Selection by Incorporating Gene Similarity into the LASSO Christopher Gillies, Xiaoli Gao, Nilesh Patel, Mohammad Siadat, and George Wilson |
} elseif($paper->event_type == 3) {?>
16:20 - 16:40 | Improved Feature Selection by Incorporating Gene Similarity into the LASSO | } elseif($paper->event_type == 4) {?>Improved Feature Selection by Incorporating Gene Similarity into the LASSO | } elseif($paper->event_type == 5) {?>16:20 - 16:40 | Improved Feature Selection by Incorporating Gene Similarity into the LASSO Christopher Gillies, Xiaoli Gao, Nilesh Patel, Mohammad Siadat, and George Wilson |
} ?>
|
16:40 - 17:00 | Discovering Aberrant Patterns of Human Connectcome in Alzheimerís Disease via Subgraph Mining Junming Shao |
} elseif($paper->event_type == 2) {?>
16:40 - 17:00 | Discovering Aberrant Patterns of Human Connectcome in Alzheimerís Disease via Subgraph Mining Junming Shao |
} elseif($paper->event_type == 3) {?>
16:40 - 17:00 | Discovering Aberrant Patterns of Human Connectcome in Alzheimerís Disease via Subgraph Mining | } elseif($paper->event_type == 4) {?>Discovering Aberrant Patterns of Human Connectcome in Alzheimerís Disease via Subgraph Mining | } elseif($paper->event_type == 5) {?>16:40 - 17:00 | Discovering Aberrant Patterns of Human Connectcome in Alzheimerís Disease via Subgraph Mining Junming Shao |
} ?>
|
17:00 - 17:20 | Figure Retrieval in Biomedical Literature P Radha Krishna, K Sai Deepak, and Harikrishna G N Rai |
} elseif($paper->event_type == 2) {?>
17:00 - 17:20 | Figure Retrieval in Biomedical Literature P Radha Krishna, K Sai Deepak, and Harikrishna G N Rai |
} elseif($paper->event_type == 3) {?>
17:00 - 17:20 | Figure Retrieval in Biomedical Literature | } elseif($paper->event_type == 4) {?>Figure Retrieval in Biomedical Literature | } elseif($paper->event_type == 5) {?>17:00 - 17:20 | Figure Retrieval in Biomedical Literature P Radha Krishna, K Sai Deepak, and Harikrishna G N Rai |
} ?>
|
17:20 - 17:40 | Discovering aging-genes by topological features in Drosophila melanogaster protein--protein interaction network Xin Song, Yuan-Chun Zhou, Kai Feng, Yan-Hui Li, and Jian-Hui Li |
} elseif($paper->event_type == 2) {?>
17:20 - 17:40 | Discovering aging-genes by topological features in Drosophila melanogaster protein--protein interaction network Xin Song, Yuan-Chun Zhou, Kai Feng, Yan-Hui Li, and Jian-Hui Li |
} elseif($paper->event_type == 3) {?>
17:20 - 17:40 | Discovering aging-genes by topological features in Drosophila melanogaster protein--protein interaction network | } elseif($paper->event_type == 4) {?>Discovering aging-genes by topological features in Drosophila melanogaster protein--protein interaction network | } elseif($paper->event_type == 5) {?>17:20 - 17:40 | Discovering aging-genes by topological features in Drosophila melanogaster protein--protein interaction network Xin Song, Yuan-Chun Zhou, Kai Feng, Yan-Hui Li, and Jian-Hui Li |
} ?>
Organized by Sunil Vadera, Mohamad Saraee, Susan Lomax
14:00 - 18:00
Room: Turner
https://sites.google.com/site/ieeecostsensitive
Most real world applications need to take account of costs, whether it is the cost of obtaining data, costs associated with applying a data mining algorithm or the financial and legal implications of misclassification. Thus, for example, in marketing, we are interested in identifying investments that produce greatest income given the cost of marketing. In medical diagnosis we need to take account of the costs of tests required in diagnosis, such as blood tests, x-rays and scans.
This workshop includes papers that explore topics such as learning rules that take account of costs of misclassification, cost sensitive unsupervised learning, the use of utility and game theory in balancing costs and benefits, active learning for minimising costs of acquiring information and even how to take account of costs when they are missing. The workshop will provide a useful opportunity to understand some of the key issues in cost sensitive data mining and current direction of research in this field.
14:00 - 14:10 | Welcome and Introduction Sunil Vadera |
} elseif($paper->event_type == 2) {?>
14:00 - 14:10 | Welcome and Introduction Sunil Vadera |
} elseif($paper->event_type == 3) {?>
14:00 - 14:10 | Welcome and Introduction | } elseif($paper->event_type == 4) {?>Welcome and Introduction | } elseif($paper->event_type == 5) {?>14:00 - 14:10 | Welcome and Introduction Sunil Vadera |
} ?>
|
14:10 - 14:40 | Invited Talk: Cost Sensitive Action Rule Mining Hendrik Blockeel |
} elseif($paper->event_type == 2) {?>
14:10 - 14:40 | Invited Talk: Cost Sensitive Action Rule Mining Hendrik Blockeel |
} elseif($paper->event_type == 3) {?>
14:10 - 14:40 | Invited Talk: Cost Sensitive Action Rule Mining | } elseif($paper->event_type == 4) {?>Invited Talk: Cost Sensitive Action Rule Mining | } elseif($paper->event_type == 5) {?>14:10 - 14:40 | Invited Talk: Cost Sensitive Action Rule Mining Hendrik Blockeel |
} ?>
|
14:40 - 15:05 | A Weighted SOM for classifying data with instance-varying importance Peter Sarlin |
} elseif($paper->event_type == 2) {?>
14:40 - 15:05 | A Weighted SOM for classifying data with instance-varying importance Peter Sarlin |
} elseif($paper->event_type == 3) {?>
14:40 - 15:05 | A Weighted SOM for classifying data with instance-varying importance | } elseif($paper->event_type == 4) {?>A Weighted SOM for classifying data with instance-varying importance | } elseif($paper->event_type == 5) {?>14:40 - 15:05 | A Weighted SOM for classifying data with instance-varying importance Peter Sarlin |
} ?>
|
15:05 - 15:30 | When Additional Views Are Not Free: Active View Completion for Multi-View Semi-Supervised Learning Brian Quanz and Jun Huan |
} elseif($paper->event_type == 2) {?>
15:05 - 15:30 | When Additional Views Are Not Free: Active View Completion for Multi-View Semi-Supervised Learning Brian Quanz and Jun Huan |
} elseif($paper->event_type == 3) {?>
15:05 - 15:30 | When Additional Views Are Not Free: Active View Completion for Multi-View Semi-Supervised Learning | } elseif($paper->event_type == 4) {?>When Additional Views Are Not Free: Active View Completion for Multi-View Semi-Supervised Learning | } elseif($paper->event_type == 5) {?>15:05 - 15:30 | When Additional Views Are Not Free: Active View Completion for Multi-View Semi-Supervised Learning Brian Quanz and Jun Huan |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 16:25 | A Multi-Armed Bandit Approach to Cost-Sensitive Decision Tree Learning Susan Lomax, Sunil Vadera, Mohamad Saraee |
} elseif($paper->event_type == 2) {?>
16:00 - 16:25 | A Multi-Armed Bandit Approach to Cost-Sensitive Decision Tree Learning Susan Lomax, Sunil Vadera, Mohamad Saraee |
} elseif($paper->event_type == 3) {?>
16:00 - 16:25 | A Multi-Armed Bandit Approach to Cost-Sensitive Decision Tree Learning | } elseif($paper->event_type == 4) {?>A Multi-Armed Bandit Approach to Cost-Sensitive Decision Tree Learning | } elseif($paper->event_type == 5) {?>16:00 - 16:25 | A Multi-Armed Bandit Approach to Cost-Sensitive Decision Tree Learning Susan Lomax, Sunil Vadera, Mohamad Saraee |
} ?>
|
16:25 - 16:50 | Learning in the Class Imbalance Problem When Costs are Unknown for Errors and Rejects Xiaowan Zhang and Baogang Hu |
} elseif($paper->event_type == 2) {?>
16:25 - 16:50 | Learning in the Class Imbalance Problem When Costs are Unknown for Errors and Rejects Xiaowan Zhang and Baogang Hu |
} elseif($paper->event_type == 3) {?>
16:25 - 16:50 | Learning in the Class Imbalance Problem When Costs are Unknown for Errors and Rejects | } elseif($paper->event_type == 4) {?>Learning in the Class Imbalance Problem When Costs are Unknown for Errors and Rejects | } elseif($paper->event_type == 5) {?>16:25 - 16:50 | Learning in the Class Imbalance Problem When Costs are Unknown for Errors and Rejects Xiaowan Zhang and Baogang Hu |
} ?>
|
16:50 - 17:15 | Learning Cost-Sensitive Rules for Non-Forced Classification Arjun Bakshi and Raj Bhatnagar |
} elseif($paper->event_type == 2) {?>
16:50 - 17:15 | Learning Cost-Sensitive Rules for Non-Forced Classification Arjun Bakshi and Raj Bhatnagar |
} elseif($paper->event_type == 3) {?>
16:50 - 17:15 | Learning Cost-Sensitive Rules for Non-Forced Classification | } elseif($paper->event_type == 4) {?>Learning Cost-Sensitive Rules for Non-Forced Classification | } elseif($paper->event_type == 5) {?>16:50 - 17:15 | Learning Cost-Sensitive Rules for Non-Forced Classification Arjun Bakshi and Raj Bhatnagar |
} ?>
|
17:15 - 17:40 | Towards Utility Maximization in Regression Rita P. Ribeiro |
} elseif($paper->event_type == 2) {?>
17:15 - 17:40 | Towards Utility Maximization in Regression Rita P. Ribeiro |
} elseif($paper->event_type == 3) {?>
17:15 - 17:40 | Towards Utility Maximization in Regression | } elseif($paper->event_type == 4) {?>Towards Utility Maximization in Regression | } elseif($paper->event_type == 5) {?>17:15 - 17:40 | Towards Utility Maximization in Regression Rita P. Ribeiro |
} ?>
|
17:40 - 18:00 | Discussion and Closing Remarks |
} elseif($paper->event_type == 2) {?>
17:40 - 18:00 | Discussion and Closing Remarks |
} elseif($paper->event_type == 3) {?>
17:40 - 18:00 | Discussion and Closing Remarks | } elseif($paper->event_type == 4) {?>Discussion and Closing Remarks | } elseif($paper->event_type == 5) {?>17:40 - 18:00 | Discussion and Closing Remarks |
} ?>
Organized by Gabor Melli, Christian Romming, and Yabo (Arber) Xu
14:00 - 18:00
Room: Alto & Mezzo
http://www.gabormelli.com/Projects/CPROD1workshop
A significant portion of user generated content on the web discusses consumer products. The CPROD1 workshop presents the state-of-the-art algorithms that ranked highest in the ICDM-2012 contest that required contestants to automatically recognize mentions of consumer products in previously unseen user generated web content, and to link each mention to the corresponding set of products in a large product catalog. Join us to discuss the future of text analytics.
14:00 - 14:05 | Welcoming and Introduction Gabor Melli |
} elseif($paper->event_type == 2) {?>
14:00 - 14:05 | Welcoming and Introduction Gabor Melli |
} elseif($paper->event_type == 3) {?>
14:00 - 14:05 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>14:00 - 14:05 | Welcoming and Introduction Gabor Melli |
} ?>
|
14:05 - 14:30 | An Overview of the CPROD1 Contest on Consumer Product Recognition within User Generated Postings and Normalization against a Large Product Catalog Gabor Melli, and Christian Romming |
} elseif($paper->event_type == 2) {?>
14:05 - 14:30 | An Overview of the CPROD1 Contest on Consumer Product Recognition within User Generated Postings and Normalization against a Large Product Catalog Gabor Melli, and Christian Romming |
} elseif($paper->event_type == 3) {?>
14:05 - 14:30 | An Overview of the CPROD1 Contest on Consumer Product Recognition within User Generated Postings and Normalization against a Large Product Catalog | } elseif($paper->event_type == 4) {?>An Overview of the CPROD1 Contest on Consumer Product Recognition within User Generated Postings and Normalization against a Large Product Catalog | } elseif($paper->event_type == 5) {?>14:05 - 14:30 | An Overview of the CPROD1 Contest on Consumer Product Recognition within User Generated Postings and Normalization against a Large Product Catalog Gabor Melli, and Christian Romming |
} ?>
|
14:30 - 15:00 | Accurate Product Name Recognition from User Generated Content Sen Wu, Zhanpeng Fang, and Jie Tang |
} elseif($paper->event_type == 2) {?>
14:30 - 15:00 | Accurate Product Name Recognition from User Generated Content Sen Wu, Zhanpeng Fang, and Jie Tang 1st place winner presentation |
} elseif($paper->event_type == 3) {?>
14:30 - 15:00 | Accurate Product Name Recognition from User Generated Content | } elseif($paper->event_type == 4) {?>Accurate Product Name Recognition from User Generated Content | } elseif($paper->event_type == 5) {?>14:30 - 15:00 | Accurate Product Name Recognition from User Generated Content Sen Wu, Zhanpeng Fang, and Jie Tang |
} ?>
|
15:00 - 15:30 | Identification and Disambiguation of Product Mentions with Information Retrieval and Problem Specific Methods Olexandr Topchylo |
} elseif($paper->event_type == 2) {?>
15:00 - 15:30 | Identification and Disambiguation of Product Mentions with Information Retrieval and Problem Specific Methods Olexandr Topchylo 2nd place winner presentation by Dafne van Kuppevelt |
} elseif($paper->event_type == 3) {?>
15:00 - 15:30 | Identification and Disambiguation of Product Mentions with Information Retrieval and Problem Specific Methods | } elseif($paper->event_type == 4) {?>Identification and Disambiguation of Product Mentions with Information Retrieval and Problem Specific Methods | } elseif($paper->event_type == 5) {?>15:00 - 15:30 | Identification and Disambiguation of Product Mentions with Information Retrieval and Problem Specific Methods Olexandr Topchylo |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 16:30 | An NER-based Product Identification and Lucene-based Product Linking Approach to CPROD1 Challenge Zhiqiang Toh, Wenting Wang, Man Lan, and Xiaoli Li |
} elseif($paper->event_type == 2) {?>
16:00 - 16:30 | An NER-based Product Identification and Lucene-based Product Linking Approach to CPROD1 Challenge Zhiqiang Toh, Wenting Wang, Man Lan, and Xiaoli Li 5th place presentation |
} elseif($paper->event_type == 3) {?>
16:00 - 16:30 | An NER-based Product Identification and Lucene-based Product Linking Approach to CPROD1 Challenge | } elseif($paper->event_type == 4) {?>An NER-based Product Identification and Lucene-based Product Linking Approach to CPROD1 Challenge | } elseif($paper->event_type == 5) {?>16:00 - 16:30 | An NER-based Product Identification and Lucene-based Product Linking Approach to CPROD1 Challenge Zhiqiang Toh, Wenting Wang, Man Lan, and Xiaoli Li |
} ?>
|
16:30 - 17:00 | Invited Talk: From Case Files to Document Structure Wauter Bosma |
} elseif($paper->event_type == 2) {?>
16:30 - 17:00 | Invited Talk: From Case Files to Document Structure Wauter Bosma |
} elseif($paper->event_type == 3) {?>
16:30 - 17:00 | Invited Talk: From Case Files to Document Structure | } elseif($paper->event_type == 4) {?>Invited Talk: From Case Files to Document Structure | } elseif($paper->event_type == 5) {?>16:30 - 17:00 | Invited Talk: From Case Files to Document Structure Wauter Bosma |
} ?>
|
17:00 - 17:30 | An Ensemble-Based Named Entity Recognition Solution for Detecting Consumer Products Łukasz Romaszko |
} elseif($paper->event_type == 2) {?>
17:00 - 17:30 | An Ensemble-Based Named Entity Recognition Solution for Detecting Consumer Products Łukasz Romaszko 3rd place winner presentation |
} elseif($paper->event_type == 3) {?>
17:00 - 17:30 | An Ensemble-Based Named Entity Recognition Solution for Detecting Consumer Products | } elseif($paper->event_type == 4) {?>An Ensemble-Based Named Entity Recognition Solution for Detecting Consumer Products | } elseif($paper->event_type == 5) {?>17:00 - 17:30 | An Ensemble-Based Named Entity Recognition Solution for Detecting Consumer Products Łukasz Romaszko |
} ?>
|
17:30 - 18:00 | Rule Based Product Name Recognition and Disambiguation Balázs Gödény |
} elseif($paper->event_type == 2) {?>
17:30 - 18:00 | Rule Based Product Name Recognition and Disambiguation Balázs Gödény 4th place presentation |
} elseif($paper->event_type == 3) {?>
17:30 - 18:00 | Rule Based Product Name Recognition and Disambiguation | } elseif($paper->event_type == 4) {?>Rule Based Product Name Recognition and Disambiguation | } elseif($paper->event_type == 5) {?>17:30 - 18:00 | Rule Based Product Name Recognition and Disambiguation Balázs Gödény |
} ?>
Organized by Giuseppe Di Fatta and Antonio Liotta
09:00 - 17:00
Room: Watteau I
http://damnet.reading.ac.uk
The complexity of numerous social, biological, and communication systems is driving many researchers towards the adoption of data mining approaches. The International Workshop on Data Mining in Networks looks specifically at how data mining is currently used for the characterization, management and control of complex networks. This aim is particularly challenging, as it requires a cross-disciplinary approach, pulling together efforts from a variety of research communities with an interest in the analysis and control of complex networks by means of Data Mining approaches.
09:00 - 09:10 | Welcoming and Introduction Antonio Liotta |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcoming and Introduction Antonio Liotta |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcoming and Introduction Antonio Liotta |
} ?>
|
09:10 - 09:35 | Motif Mining in Weighted Networks Sarvenz Choobdar, Pedro Ribeiro and Fernando Silva |
} elseif($paper->event_type == 2) {?>
09:10 - 09:35 | Motif Mining in Weighted Networks Sarvenz Choobdar, Pedro Ribeiro and Fernando Silva |
} elseif($paper->event_type == 3) {?>
09:10 - 09:35 | Motif Mining in Weighted Networks | } elseif($paper->event_type == 4) {?>Motif Mining in Weighted Networks | } elseif($paper->event_type == 5) {?>09:10 - 09:35 | Motif Mining in Weighted Networks Sarvenz Choobdar, Pedro Ribeiro and Fernando Silva |
} ?>
|
09:35 - 10:00 | Comparison of the Efficiency of MapReduce and Bulk Synchronous Parallel Approaches to Large Network Processing Tomasz Kajdanowicz |
} elseif($paper->event_type == 2) {?>
09:35 - 10:00 | Comparison of the Efficiency of MapReduce and Bulk Synchronous Parallel Approaches to Large Network Processing Tomasz Kajdanowicz |
} elseif($paper->event_type == 3) {?>
09:35 - 10:00 | Comparison of the Efficiency of MapReduce and Bulk Synchronous Parallel Approaches to Large Network Processing | } elseif($paper->event_type == 4) {?>Comparison of the Efficiency of MapReduce and Bulk Synchronous Parallel Approaches to Large Network Processing | } elseif($paper->event_type == 5) {?>09:35 - 10:00 | Comparison of the Efficiency of MapReduce and Bulk Synchronous Parallel Approaches to Large Network Processing Tomasz Kajdanowicz |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:35 - 11:00 | Canonical Correlation Analysis for Detecting Changes in Network Structure Aidan O'Sullivan, Niall Adams and Iead Rezek |
} elseif($paper->event_type == 2) {?>
10:35 - 11:00 | Canonical Correlation Analysis for Detecting Changes in Network Structure Aidan O'Sullivan, Niall Adams and Iead Rezek |
} elseif($paper->event_type == 3) {?>
10:35 - 11:00 | Canonical Correlation Analysis for Detecting Changes in Network Structure | } elseif($paper->event_type == 4) {?>Canonical Correlation Analysis for Detecting Changes in Network Structure | } elseif($paper->event_type == 5) {?>10:35 - 11:00 | Canonical Correlation Analysis for Detecting Changes in Network Structure Aidan O'Sullivan, Niall Adams and Iead Rezek |
} ?>
|
11:00 - 11:25 | Uncovering the Spatio-Temporal Structure of Social Networks using Cell Phone Records Luis G. Moyano, Oscar Ricardo Moll Thomae and Enrique Frias-Martinez |
} elseif($paper->event_type == 2) {?>
11:00 - 11:25 | Uncovering the Spatio-Temporal Structure of Social Networks using Cell Phone Records Luis G. Moyano, Oscar Ricardo Moll Thomae and Enrique Frias-Martinez |
} elseif($paper->event_type == 3) {?>
11:00 - 11:25 | Uncovering the Spatio-Temporal Structure of Social Networks using Cell Phone Records | } elseif($paper->event_type == 4) {?>Uncovering the Spatio-Temporal Structure of Social Networks using Cell Phone Records | } elseif($paper->event_type == 5) {?>11:00 - 11:25 | Uncovering the Spatio-Temporal Structure of Social Networks using Cell Phone Records Luis G. Moyano, Oscar Ricardo Moll Thomae and Enrique Frias-Martinez |
} ?>
|
11:25 - 11:50 | Maximizing Information Spread Through Influence Structures in Social Networks Saurav Pandit, Yang Yang and Nitesh Chawla |
} elseif($paper->event_type == 2) {?>
11:25 - 11:50 | Maximizing Information Spread Through Influence Structures in Social Networks Saurav Pandit, Yang Yang and Nitesh Chawla |
} elseif($paper->event_type == 3) {?>
11:25 - 11:50 | Maximizing Information Spread Through Influence Structures in Social Networks | } elseif($paper->event_type == 4) {?>Maximizing Information Spread Through Influence Structures in Social Networks | } elseif($paper->event_type == 5) {?>11:25 - 11:50 | Maximizing Information Spread Through Influence Structures in Social Networks Saurav Pandit, Yang Yang and Nitesh Chawla |
} ?>
|
12:00 - 14:30 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:00 - 14:30 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:00 - 14:30 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:00 - 14:30 | Lunch Break |
} ?>
|
14:35 - 15:00 | Sampling Online Social Networks Using Coupling From The Past Kenton White, Guichong Li and Nathalie Japkowicz |
} elseif($paper->event_type == 2) {?>
14:35 - 15:00 | Sampling Online Social Networks Using Coupling From The Past Kenton White, Guichong Li and Nathalie Japkowicz |
} elseif($paper->event_type == 3) {?>
14:35 - 15:00 | Sampling Online Social Networks Using Coupling From The Past | } elseif($paper->event_type == 4) {?>Sampling Online Social Networks Using Coupling From The Past | } elseif($paper->event_type == 5) {?>14:35 - 15:00 | Sampling Online Social Networks Using Coupling From The Past Kenton White, Guichong Li and Nathalie Japkowicz |
} ?>
|
15:00 - 15:25 | EigenSP: A More Accurate Shortest Path Distance Estimation on Large-Scale Networks Koji Maruhashi, Junichi Shigezumi, Nobuhiro Yugami and Christos Faloutsos |
} elseif($paper->event_type == 2) {?>
15:00 - 15:25 | EigenSP: A More Accurate Shortest Path Distance Estimation on Large-Scale Networks Koji Maruhashi, Junichi Shigezumi, Nobuhiro Yugami and Christos Faloutsos |
} elseif($paper->event_type == 3) {?>
15:00 - 15:25 | EigenSP: A More Accurate Shortest Path Distance Estimation on Large-Scale Networks | } elseif($paper->event_type == 4) {?>EigenSP: A More Accurate Shortest Path Distance Estimation on Large-Scale Networks | } elseif($paper->event_type == 5) {?>15:00 - 15:25 | EigenSP: A More Accurate Shortest Path Distance Estimation on Large-Scale Networks Koji Maruhashi, Junichi Shigezumi, Nobuhiro Yugami and Christos Faloutsos |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:05 - 16:30 | Sensor Network Localization for Moving Sensors Arvind Agarwal, Hal Daume, Jeff M. Phillips and Suresh Venkatasubramanian |
} elseif($paper->event_type == 2) {?>
16:05 - 16:30 | Sensor Network Localization for Moving Sensors Arvind Agarwal, Hal Daume, Jeff M. Phillips and Suresh Venkatasubramanian |
} elseif($paper->event_type == 3) {?>
16:05 - 16:30 | Sensor Network Localization for Moving Sensors | } elseif($paper->event_type == 4) {?>Sensor Network Localization for Moving Sensors | } elseif($paper->event_type == 5) {?>16:05 - 16:30 | Sensor Network Localization for Moving Sensors Arvind Agarwal, Hal Daume, Jeff M. Phillips and Suresh Venkatasubramanian |
} ?>
|
16:30 - 16:55 | Effect of Data Repair on Mining Network Streams Ji Meng Loh and Tamraparni Dasu |
} elseif($paper->event_type == 2) {?>
16:30 - 16:55 | Effect of Data Repair on Mining Network Streams Ji Meng Loh and Tamraparni Dasu |
} elseif($paper->event_type == 3) {?>
16:30 - 16:55 | Effect of Data Repair on Mining Network Streams | } elseif($paper->event_type == 4) {?>Effect of Data Repair on Mining Network Streams | } elseif($paper->event_type == 5) {?>16:30 - 16:55 | Effect of Data Repair on Mining Network Streams Ji Meng Loh and Tamraparni Dasu |
} ?>
|
16:55 - 17:00 | Conclusive remarks Antonio Liotta |
} elseif($paper->event_type == 2) {?>
16:55 - 17:00 | Conclusive remarks Antonio Liotta |
} elseif($paper->event_type == 3) {?>
16:55 - 17:00 | Conclusive remarks | } elseif($paper->event_type == 4) {?>Conclusive remarks | } elseif($paper->event_type == 5) {?>16:55 - 17:00 | Conclusive remarks Antonio Liotta |
} ?>
Organized by Shusaku Tsumoto and Katsutoshi Yada
09:00 - 17:05
Room: Watteau II
http://www2.itc.kansai-u.ac.jp/~yada/conf/dms12
In midst of service applications in engineering and the increasing importance of the service sector in the global economy, services are being scientifically and much attention is being focused on service science as a means to improve productivity and underlying business process. The focus of this workshop is on empirical findings, methodological papers, and theoretical and conceptual insights related to data mining in the field of various service application areas.
09:00 - 09:10 | Welcoming and Introduction Shusaku Tsumoto and Katsutoshi Yada |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcoming and Introduction Shusaku Tsumoto and Katsutoshi Yada |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcoming and Introduction Shusaku Tsumoto and Katsutoshi Yada |
} ?>
|
09:10 - 10:00 | Invited Talk: Systems Health Care - The Power of Data Intelligence Dr. Hiroshi Nakajima |
} elseif($paper->event_type == 2) {?>
09:10 - 10:00 | Invited Talk: Systems Health Care - The Power of Data Intelligence Dr. Hiroshi Nakajima |
} elseif($paper->event_type == 3) {?>
09:10 - 10:00 | Invited Talk: Systems Health Care - The Power of Data Intelligence | } elseif($paper->event_type == 4) {?>Invited Talk: Systems Health Care - The Power of Data Intelligence | } elseif($paper->event_type == 5) {?>09:10 - 10:00 | Invited Talk: Systems Health Care - The Power of Data Intelligence Dr. Hiroshi Nakajima |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 11:45 | Dependencies and Sequences |
} elseif($paper->event_type == 2) {?>
10:30 - 11:45 | Dependencies and Sequences |
} elseif($paper->event_type == 3) {?>
10:30 - 11:45 | Dependencies and Sequences | } elseif($paper->event_type == 4) {?>Dependencies and Sequences | } elseif($paper->event_type == 5) {?>10:30 - 11:45 | Dependencies and Sequences |
} ?>
|
10:30 - 10:55 | Exploration of dependencies among sections in a supermarket using a tree-structured graphical model Keiji Takai |
} elseif($paper->event_type == 2) {?>
10:30 - 10:55 | Exploration of dependencies among sections in a supermarket using a tree-structured graphical model Keiji Takai |
} elseif($paper->event_type == 3) {?>
10:30 - 10:55 | Exploration of dependencies among sections in a supermarket using a tree-structured graphical model | } elseif($paper->event_type == 4) {?>Exploration of dependencies among sections in a supermarket using a tree-structured graphical model | } elseif($paper->event_type == 5) {?>10:30 - 10:55 | Exploration of dependencies among sections in a supermarket using a tree-structured graphical model Keiji Takai |
} ?>
|
10:55 - 11:20 | Extracting information from sequences of financial ratios with Markov for Discrimination: an application to bankruptcy prediction Andrey Volkov and Dirk Van den Poel |
} elseif($paper->event_type == 2) {?>
10:55 - 11:20 | Extracting information from sequences of financial ratios with Markov for Discrimination: an application to bankruptcy prediction Andrey Volkov and Dirk Van den Poel |
} elseif($paper->event_type == 3) {?>
10:55 - 11:20 | Extracting information from sequences of financial ratios with Markov for Discrimination: an application to bankruptcy prediction | } elseif($paper->event_type == 4) {?>Extracting information from sequences of financial ratios with Markov for Discrimination: an application to bankruptcy prediction | } elseif($paper->event_type == 5) {?>10:55 - 11:20 | Extracting information from sequences of financial ratios with Markov for Discrimination: an application to bankruptcy prediction Andrey Volkov and Dirk Van den Poel |
} ?>
|
11:20 - 11:45 | Streamlining Service Levels for IT Infrastructure Support Girish Palshikar, Mohammed Mudassar, Harrick Vin and Maitreya Natu |
} elseif($paper->event_type == 2) {?>
11:20 - 11:45 | Streamlining Service Levels for IT Infrastructure Support Girish Palshikar, Mohammed Mudassar, Harrick Vin and Maitreya Natu |
} elseif($paper->event_type == 3) {?>
11:20 - 11:45 | Streamlining Service Levels for IT Infrastructure Support | } elseif($paper->event_type == 4) {?>Streamlining Service Levels for IT Infrastructure Support | } elseif($paper->event_type == 5) {?>11:20 - 11:45 | Streamlining Service Levels for IT Infrastructure Support Girish Palshikar, Mohammed Mudassar, Harrick Vin and Maitreya Natu |
} ?>
|
11:45 - 14:00 | Lunch Break |
} elseif($paper->event_type == 2) {?>
11:45 - 14:00 | Lunch Break |
} elseif($paper->event_type == 3) {?>
11:45 - 14:00 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>11:45 - 14:00 | Lunch Break |
} ?>
|
14:00 - 15:15 | Analytics |
} elseif($paper->event_type == 2) {?>
14:00 - 15:15 | Analytics |
} elseif($paper->event_type == 3) {?>
14:00 - 15:15 | Analytics | } elseif($paper->event_type == 4) {?>Analytics | } elseif($paper->event_type == 5) {?>14:00 - 15:15 | Analytics |
} ?>
|
14:00 - 14:25 | Temporary Staffing Services: A Data Mining Perspective Jeroen D'Haen and Dirk Van den Poel |
} elseif($paper->event_type == 2) {?>
14:00 - 14:25 | Temporary Staffing Services: A Data Mining Perspective Jeroen D'Haen and Dirk Van den Poel |
} elseif($paper->event_type == 3) {?>
14:00 - 14:25 | Temporary Staffing Services: A Data Mining Perspective | } elseif($paper->event_type == 4) {?>Temporary Staffing Services: A Data Mining Perspective | } elseif($paper->event_type == 5) {?>14:00 - 14:25 | Temporary Staffing Services: A Data Mining Perspective Jeroen D'Haen and Dirk Van den Poel |
} ?>
|
14:25 - 14:50 | An Analytics Approach for Proactively Combating Voluntary Attrition of Employees Moninder Singh, Kush Varshney, Jun Wang, Aleksandra Mojsilovic, Mark Squillante, Yingdong Lu, Alisia Gill, Patricia Faur and Raphael Ezry |
} elseif($paper->event_type == 2) {?>
14:25 - 14:50 | An Analytics Approach for Proactively Combating Voluntary Attrition of Employees Moninder Singh, Kush Varshney, Jun Wang, Aleksandra Mojsilovic, Mark Squillante, Yingdong Lu, Alisia Gill, Patricia Faur and Raphael Ezry |
} elseif($paper->event_type == 3) {?>
14:25 - 14:50 | An Analytics Approach for Proactively Combating Voluntary Attrition of Employees | } elseif($paper->event_type == 4) {?>An Analytics Approach for Proactively Combating Voluntary Attrition of Employees | } elseif($paper->event_type == 5) {?>14:25 - 14:50 | An Analytics Approach for Proactively Combating Voluntary Attrition of Employees Moninder Singh, Kush Varshney, Jun Wang, Aleksandra Mojsilovic, Mark Squillante, Yingdong Lu, Alisia Gill, Patricia Faur and Raphael Ezry |
} ?>
|
14:50 - 15:15 | Viewers' side analysis of social interests Takeshi Mitamura and Kenichi Yoshida |
} elseif($paper->event_type == 2) {?>
14:50 - 15:15 | Viewers' side analysis of social interests Takeshi Mitamura and Kenichi Yoshida |
} elseif($paper->event_type == 3) {?>
14:50 - 15:15 | Viewers' side analysis of social interests | } elseif($paper->event_type == 4) {?>Viewers' side analysis of social interests | } elseif($paper->event_type == 5) {?>14:50 - 15:15 | Viewers' side analysis of social interests Takeshi Mitamura and Kenichi Yoshida |
} ?>
|
15:15 - 15:45 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:15 - 15:45 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:15 - 15:45 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:15 - 15:45 | Coffee Break |
} ?>
|
15:45 - 17:25 | Navigation and Service |
} elseif($paper->event_type == 2) {?>
15:45 - 17:25 | Navigation and Service |
} elseif($paper->event_type == 3) {?>
15:45 - 17:25 | Navigation and Service | } elseif($paper->event_type == 4) {?>Navigation and Service | } elseif($paper->event_type == 5) {?>15:45 - 17:25 | Navigation and Service |
} ?>
|
15:45 - 16:10 | Data-oriented Construction and Maintenance of Clinical Pathway using similarity-based data mining methods Haruko Iwata, Shoji Hirano and Shusaku Tsumoto |
} elseif($paper->event_type == 2) {?>
15:45 - 16:10 | Data-oriented Construction and Maintenance of Clinical Pathway using similarity-based data mining methods Haruko Iwata, Shoji Hirano and Shusaku Tsumoto |
} elseif($paper->event_type == 3) {?>
15:45 - 16:10 | Data-oriented Construction and Maintenance of Clinical Pathway using similarity-based data mining methods | } elseif($paper->event_type == 4) {?>Data-oriented Construction and Maintenance of Clinical Pathway using similarity-based data mining methods | } elseif($paper->event_type == 5) {?>15:45 - 16:10 | Data-oriented Construction and Maintenance of Clinical Pathway using similarity-based data mining methods Haruko Iwata, Shoji Hirano and Shusaku Tsumoto |
} ?>
|
16:10 - 16:35 | Applying an Auction Data Generator to the Evaluation of Fraud Detection Algorithms Sidney Tsang, Yun Sing Koh and Gillian Dobbie |
} elseif($paper->event_type == 2) {?>
16:10 - 16:35 | Applying an Auction Data Generator to the Evaluation of Fraud Detection Algorithms Sidney Tsang, Yun Sing Koh and Gillian Dobbie |
} elseif($paper->event_type == 3) {?>
16:10 - 16:35 | Applying an Auction Data Generator to the Evaluation of Fraud Detection Algorithms | } elseif($paper->event_type == 4) {?>Applying an Auction Data Generator to the Evaluation of Fraud Detection Algorithms | } elseif($paper->event_type == 5) {?>16:10 - 16:35 | Applying an Auction Data Generator to the Evaluation of Fraud Detection Algorithms Sidney Tsang, Yun Sing Koh and Gillian Dobbie |
} ?>
|
16:35 - 17:00 | Data Mining in the Age of Curation Akinori Abe |
} elseif($paper->event_type == 2) {?>
16:35 - 17:00 | Data Mining in the Age of Curation Akinori Abe |
} elseif($paper->event_type == 3) {?>
16:35 - 17:00 | Data Mining in the Age of Curation | } elseif($paper->event_type == 4) {?>Data Mining in the Age of Curation | } elseif($paper->event_type == 5) {?>16:35 - 17:00 | Data Mining in the Age of Curation Akinori Abe |
} ?>
|
17:00 - 17:05 | Closing Shusaku Tsumoto and Katsutoshi Yada |
} elseif($paper->event_type == 2) {?>
17:00 - 17:05 | Closing Shusaku Tsumoto and Katsutoshi Yada |
} elseif($paper->event_type == 3) {?>
17:00 - 17:05 | Closing | } elseif($paper->event_type == 4) {?>Closing | } elseif($paper->event_type == 5) {?>17:00 - 17:05 | Closing Shusaku Tsumoto and Katsutoshi Yada |
} ?>
Organized by Toon Calders and Indrė Žliobaitė
08:30 - 12:30
Room: Tintoretto II
https://sites.google.com/site/dpadm2012
The workshop focuses on technological, legal, ethical and social issues of discrimination and privacy in data mining.
08:30 - 08:40 | Introduction |
} elseif($paper->event_type == 2) {?>
08:30 - 08:40 | Introduction |
} elseif($paper->event_type == 3) {?>
08:30 - 08:40 | Introduction | } elseif($paper->event_type == 4) {?>Introduction | } elseif($paper->event_type == 5) {?>08:30 - 08:40 | Introduction |
} ?>
|
08:40 - 09:00 | Discovering gender discrimination in project funding Andrea Romei, Salvatore Ruggieri and Franco Turini |
} elseif($paper->event_type == 2) {?>
08:40 - 09:00 | Discovering gender discrimination in project funding Andrea Romei, Salvatore Ruggieri and Franco Turini |
} elseif($paper->event_type == 3) {?>
08:40 - 09:00 | Discovering gender discrimination in project funding | } elseif($paper->event_type == 4) {?>Discovering gender discrimination in project funding | } elseif($paper->event_type == 5) {?>08:40 - 09:00 | Discovering gender discrimination in project funding Andrea Romei, Salvatore Ruggieri and Franco Turini |
} ?>
|
09:00 - 09:20 | Avoiding discrimination when classifying socially sensitive data Faisal Kamiran, Asim Karim, Sicco Verwer and Heike Goudriaan |
} elseif($paper->event_type == 2) {?>
09:00 - 09:20 | Avoiding discrimination when classifying socially sensitive data Faisal Kamiran, Asim Karim, Sicco Verwer and Heike Goudriaan |
} elseif($paper->event_type == 3) {?>
09:00 - 09:20 | Avoiding discrimination when classifying socially sensitive data | } elseif($paper->event_type == 4) {?>Avoiding discrimination when classifying socially sensitive data | } elseif($paper->event_type == 5) {?>09:00 - 09:20 | Avoiding discrimination when classifying socially sensitive data Faisal Kamiran, Asim Karim, Sicco Verwer and Heike Goudriaan |
} ?>
|
09:20 - 09:40 | Discriminatory Decision Policy Aware Classification Koray Mancuhan and Chris Clifton |
} elseif($paper->event_type == 2) {?>
09:20 - 09:40 | Discriminatory Decision Policy Aware Classification Koray Mancuhan and Chris Clifton |
} elseif($paper->event_type == 3) {?>
09:20 - 09:40 | Discriminatory Decision Policy Aware Classification | } elseif($paper->event_type == 4) {?>Discriminatory Decision Policy Aware Classification | } elseif($paper->event_type == 5) {?>09:20 - 09:40 | Discriminatory Decision Policy Aware Classification Koray Mancuhan and Chris Clifton |
} ?>
|
09:40 - 10:00 | Injecting Discrimination and Privacy Awareness into Pattern Discovery Sara Hajian, Anna Monreale, Dino Pedreschi, Josep Domingo-Ferrer and Fosca Giannotti |
} elseif($paper->event_type == 2) {?>
09:40 - 10:00 | Injecting Discrimination and Privacy Awareness into Pattern Discovery Sara Hajian, Anna Monreale, Dino Pedreschi, Josep Domingo-Ferrer and Fosca Giannotti |
} elseif($paper->event_type == 3) {?>
09:40 - 10:00 | Injecting Discrimination and Privacy Awareness into Pattern Discovery | } elseif($paper->event_type == 4) {?>Injecting Discrimination and Privacy Awareness into Pattern Discovery | } elseif($paper->event_type == 5) {?>09:40 - 10:00 | Injecting Discrimination and Privacy Awareness into Pattern Discovery Sara Hajian, Anna Monreale, Dino Pedreschi, Josep Domingo-Ferrer and Fosca Giannotti |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 10:50 | Exploring discrimination: A user-centric evaluation of discrimination-aware data mining Bettina Berendt and Soeren Preibusch |
} elseif($paper->event_type == 2) {?>
10:30 - 10:50 | Exploring discrimination: A user-centric evaluation of discrimination-aware data mining Bettina Berendt and Soeren Preibusch |
} elseif($paper->event_type == 3) {?>
10:30 - 10:50 | Exploring discrimination: A user-centric evaluation of discrimination-aware data mining | } elseif($paper->event_type == 4) {?>Exploring discrimination: A user-centric evaluation of discrimination-aware data mining | } elseif($paper->event_type == 5) {?>10:30 - 10:50 | Exploring discrimination: A user-centric evaluation of discrimination-aware data mining Bettina Berendt and Soeren Preibusch |
} ?>
|
10:50 - 11:10 | A Study on the Impact of Data Anonymization on Anti-discrimination Sara Hajian and Josep Domingo-Ferrer |
} elseif($paper->event_type == 2) {?>
10:50 - 11:10 | A Study on the Impact of Data Anonymization on Anti-discrimination Sara Hajian and Josep Domingo-Ferrer |
} elseif($paper->event_type == 3) {?>
10:50 - 11:10 | A Study on the Impact of Data Anonymization on Anti-discrimination | } elseif($paper->event_type == 4) {?>A Study on the Impact of Data Anonymization on Anti-discrimination | } elseif($paper->event_type == 5) {?>10:50 - 11:10 | A Study on the Impact of Data Anonymization on Anti-discrimination Sara Hajian and Josep Domingo-Ferrer |
} ?>
|
11:10 - 11:30 | Considerations on Fairness-aware Data Mining Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh and Jun Sakuma |
} elseif($paper->event_type == 2) {?>
11:10 - 11:30 | Considerations on Fairness-aware Data Mining Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh and Jun Sakuma |
} elseif($paper->event_type == 3) {?>
11:10 - 11:30 | Considerations on Fairness-aware Data Mining | } elseif($paper->event_type == 4) {?>Considerations on Fairness-aware Data Mining | } elseif($paper->event_type == 5) {?>11:10 - 11:30 | Considerations on Fairness-aware Data Mining Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh and Jun Sakuma |
} ?>
|
11:30 - 12:15 | Invited Talk: Challenges of Ambient Law and Legal Protection in the Profiling Era Prof. dr. Mireille Hildebrandt |
} elseif($paper->event_type == 2) {?>
11:30 - 12:15 | Invited Talk: Challenges of Ambient Law and Legal Protection in the Profiling Era Prof. dr. Mireille Hildebrandt |
} elseif($paper->event_type == 3) {?>
11:30 - 12:15 | Invited Talk: Challenges of Ambient Law and Legal Protection in the Profiling Era | } elseif($paper->event_type == 4) {?>Invited Talk: Challenges of Ambient Law and Legal Protection in the Profiling Era | } elseif($paper->event_type == 5) {?>11:30 - 12:15 | Invited Talk: Challenges of Ambient Law and Legal Protection in the Profiling Era Prof. dr. Mireille Hildebrandt |
} ?>
|
12:15 - 12:30 | Closing discussion |
} elseif($paper->event_type == 2) {?>
12:15 - 12:30 | Closing discussion |
} elseif($paper->event_type == 3) {?>
12:15 - 12:30 | Closing discussion | } elseif($paper->event_type == 4) {?>Closing discussion | } elseif($paper->event_type == 5) {?>12:15 - 12:30 | Closing discussion |
} ?>
Organized by Ranga Raju Vatsavai and Sanjay Ranka
09:00 - 12:45
Room: Tintoretto I
http://www.ornl.gov/sci/knowledgediscovery/CloudComputing/KDCloud-12
This workshop features a keynote speaker and seven peer-reviewed technical presentations covering a broad specturm of cloud enabled data mining schemes. We welcome all data miners to attend this workshop.
09:00 - 09:10 | Welcoming and Introduction Ranga Raju Vatsavai |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcoming and Introduction Ranga Raju Vatsavai |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcoming and Introduction Ranga Raju Vatsavai |
} ?>
|
09:10 - 09:50 | Keynote Talk |
} elseif($paper->event_type == 2) {?>
09:10 - 09:50 | Keynote Talk |
} elseif($paper->event_type == 3) {?>
09:10 - 09:50 | Keynote Talk | } elseif($paper->event_type == 4) {?>Keynote Talk | } elseif($paper->event_type == 5) {?>09:10 - 09:50 | Keynote Talk |
} ?>
|
09:50 - 10:10 | Genetic Algorithm based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Networks Anand Kannan, Ayush Sharma, Gerald Q. Maguire, Jr., and Peter Schoo |
} elseif($paper->event_type == 2) {?>
09:50 - 10:10 | Genetic Algorithm based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Networks Anand Kannan, Ayush Sharma, Gerald Q. Maguire, Jr., and Peter Schoo |
} elseif($paper->event_type == 3) {?>
09:50 - 10:10 | Genetic Algorithm based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Networks | } elseif($paper->event_type == 4) {?>Genetic Algorithm based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Networks | } elseif($paper->event_type == 5) {?>09:50 - 10:10 | Genetic Algorithm based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Networks Anand Kannan, Ayush Sharma, Gerald Q. Maguire, Jr., and Peter Schoo |
} ?>
|
10:10 - 10:30 | MapReduce-based Closed Frequent Itemset Mining with Efficient Redundancy Filtering Su-Qi Wang, Yu-Bin Yang, Yang Gao, Guang-Peng Chen, and Yao Zhang |
} elseif($paper->event_type == 2) {?>
10:10 - 10:30 | MapReduce-based Closed Frequent Itemset Mining with Efficient Redundancy Filtering Su-Qi Wang, Yu-Bin Yang, Yang Gao, Guang-Peng Chen, and Yao Zhang |
} elseif($paper->event_type == 3) {?>
10:10 - 10:30 | MapReduce-based Closed Frequent Itemset Mining with Efficient Redundancy Filtering | } elseif($paper->event_type == 4) {?>MapReduce-based Closed Frequent Itemset Mining with Efficient Redundancy Filtering | } elseif($paper->event_type == 5) {?>10:10 - 10:30 | MapReduce-based Closed Frequent Itemset Mining with Efficient Redundancy Filtering Su-Qi Wang, Yu-Bin Yang, Yang Gao, Guang-Peng Chen, and Yao Zhang |
} ?>
|
10:30 - 11:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:30 - 11:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:30 - 11:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:30 - 11:00 | Coffee Break |
} ?>
|
11:00 - 11:20 | Using Storm to Perform Dynamic Egocentric Network Motif Analysis Martin Harrigan, Lorcan Coyle, and Padraig Cunningham |
} elseif($paper->event_type == 2) {?>
11:00 - 11:20 | Using Storm to Perform Dynamic Egocentric Network Motif Analysis Martin Harrigan, Lorcan Coyle, and Padraig Cunningham |
} elseif($paper->event_type == 3) {?>
11:00 - 11:20 | Using Storm to Perform Dynamic Egocentric Network Motif Analysis | } elseif($paper->event_type == 4) {?>Using Storm to Perform Dynamic Egocentric Network Motif Analysis | } elseif($paper->event_type == 5) {?>11:00 - 11:20 | Using Storm to Perform Dynamic Egocentric Network Motif Analysis Martin Harrigan, Lorcan Coyle, and Padraig Cunningham |
} ?>
|
11:20 - 11:40 | Parallel Concept Drift Detection with Online Map-Reduce Artur Andrzejak and Joao Gomes |
} elseif($paper->event_type == 2) {?>
11:20 - 11:40 | Parallel Concept Drift Detection with Online Map-Reduce Artur Andrzejak and Joao Gomes |
} elseif($paper->event_type == 3) {?>
11:20 - 11:40 | Parallel Concept Drift Detection with Online Map-Reduce | } elseif($paper->event_type == 4) {?>Parallel Concept Drift Detection with Online Map-Reduce | } elseif($paper->event_type == 5) {?>11:20 - 11:40 | Parallel Concept Drift Detection with Online Map-Reduce Artur Andrzejak and Joao Gomes |
} ?>
|
11:40 - 12:00 | Convex-Concave Hull for Classification with Support Vector Machine Asdrubal López-Chau, Xiaoou Li, Wen Yu, and Jair Cervantes |
} elseif($paper->event_type == 2) {?>
11:40 - 12:00 | Convex-Concave Hull for Classification with Support Vector Machine Asdrubal López-Chau, Xiaoou Li, Wen Yu, and Jair Cervantes |
} elseif($paper->event_type == 3) {?>
11:40 - 12:00 | Convex-Concave Hull for Classification with Support Vector Machine | } elseif($paper->event_type == 4) {?>Convex-Concave Hull for Classification with Support Vector Machine | } elseif($paper->event_type == 5) {?>11:40 - 12:00 | Convex-Concave Hull for Classification with Support Vector Machine Asdrubal López-Chau, Xiaoou Li, Wen Yu, and Jair Cervantes |
} ?>
|
12:00 - 12:20 | Large Scale KNN-Graph Approximation Mohamed Riadh Trad, Alexis Joly, and Nozha Boujemaa |
} elseif($paper->event_type == 2) {?>
12:00 - 12:20 | Large Scale KNN-Graph Approximation Mohamed Riadh Trad, Alexis Joly, and Nozha Boujemaa |
} elseif($paper->event_type == 3) {?>
12:00 - 12:20 | Large Scale KNN-Graph Approximation | } elseif($paper->event_type == 4) {?>Large Scale KNN-Graph Approximation | } elseif($paper->event_type == 5) {?>12:00 - 12:20 | Large Scale KNN-Graph Approximation Mohamed Riadh Trad, Alexis Joly, and Nozha Boujemaa |
} ?>
|
12:20 - 12:40 | Scalable Clustering Using PACT Programming Model Sharanjit Kaur, Tripti Gupta, Dhriti khanna, and Vasudha Bhatnagar |
} elseif($paper->event_type == 2) {?>
12:20 - 12:40 | Scalable Clustering Using PACT Programming Model Sharanjit Kaur, Tripti Gupta, Dhriti khanna, and Vasudha Bhatnagar |
} elseif($paper->event_type == 3) {?>
12:20 - 12:40 | Scalable Clustering Using PACT Programming Model | } elseif($paper->event_type == 4) {?>Scalable Clustering Using PACT Programming Model | } elseif($paper->event_type == 5) {?>12:20 - 12:40 | Scalable Clustering Using PACT Programming Model Sharanjit Kaur, Tripti Gupta, Dhriti khanna, and Vasudha Bhatnagar |
} ?>
|
12:40 - 12:45 | Closing Remarks |
} elseif($paper->event_type == 2) {?>
12:40 - 12:45 | Closing Remarks |
} elseif($paper->event_type == 3) {?>
12:40 - 12:45 | Closing Remarks | } elseif($paper->event_type == 4) {?>Closing Remarks | } elseif($paper->event_type == 5) {?>12:40 - 12:45 | Closing Remarks |
} ?>
Organized by Yong Shi and Chris Ding
08:45 - 17:10
Room: Willumsen
http://www.feds.ac.cn/academic/Pages/academicShow.aspx?academicID=16
This workshop will present recent advances in optimization techniques for, especially new emerging, data mining problems, as well as the real-life applications among. One main goal of the workshop is to bring together the leading researchers who work on state-of-the-art algorithms on optimization based methods for modern data analysis, and also the practitioners who seek for novel applications.
08:45 - 09:10 | Anomalous Neighborhood Selection Satoshi Hara and Takashi WASHIO |
} elseif($paper->event_type == 2) {?>
08:45 - 09:10 | Anomalous Neighborhood Selection Satoshi Hara and Takashi WASHIO |
} elseif($paper->event_type == 3) {?>
08:45 - 09:10 | Anomalous Neighborhood Selection | } elseif($paper->event_type == 4) {?>Anomalous Neighborhood Selection | } elseif($paper->event_type == 5) {?>08:45 - 09:10 | Anomalous Neighborhood Selection Satoshi Hara and Takashi WASHIO |
} ?>
|
09:10 - 09:35 | The Performance of alternative Exchange Rate Regimes and Their Countries condition: Matching Analysis and Selection Model Building Haizhen Yang, Yunpeng Song, and Kun Guo |
} elseif($paper->event_type == 2) {?>
09:10 - 09:35 | The Performance of alternative Exchange Rate Regimes and Their Countries condition: Matching Analysis and Selection Model Building Haizhen Yang, Yunpeng Song, and Kun Guo |
} elseif($paper->event_type == 3) {?>
09:10 - 09:35 | The Performance of alternative Exchange Rate Regimes and Their Countries condition: Matching Analysis and Selection Model Building | } elseif($paper->event_type == 4) {?>The Performance of alternative Exchange Rate Regimes and Their Countries condition: Matching Analysis and Selection Model Building | } elseif($paper->event_type == 5) {?>09:10 - 09:35 | The Performance of alternative Exchange Rate Regimes and Their Countries condition: Matching Analysis and Selection Model Building Haizhen Yang, Yunpeng Song, and Kun Guo |
} ?>
|
09:35 - 10:00 | Employing Principal Hessian Direction for Building Hinging Hyperplane Models Anca Maria Ivanescu, Thivaharan Albin, Dirk Abel, and Thomas Seidl |
} elseif($paper->event_type == 2) {?>
09:35 - 10:00 | Employing Principal Hessian Direction for Building Hinging Hyperplane Models Anca Maria Ivanescu, Thivaharan Albin, Dirk Abel, and Thomas Seidl |
} elseif($paper->event_type == 3) {?>
09:35 - 10:00 | Employing Principal Hessian Direction for Building Hinging Hyperplane Models | } elseif($paper->event_type == 4) {?>Employing Principal Hessian Direction for Building Hinging Hyperplane Models | } elseif($paper->event_type == 5) {?>09:35 - 10:00 | Employing Principal Hessian Direction for Building Hinging Hyperplane Models Anca Maria Ivanescu, Thivaharan Albin, Dirk Abel, and Thomas Seidl |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 10:55 | Nonlinear L-1 Support Vector Machines for Learning Using Privileged Information Lingfeng Niu, and Jianmin Wu |
} elseif($paper->event_type == 2) {?>
10:30 - 10:55 | Nonlinear L-1 Support Vector Machines for Learning Using Privileged Information Lingfeng Niu, and Jianmin Wu |
} elseif($paper->event_type == 3) {?>
10:30 - 10:55 | Nonlinear L-1 Support Vector Machines for Learning Using Privileged Information | } elseif($paper->event_type == 4) {?>Nonlinear L-1 Support Vector Machines for Learning Using Privileged Information | } elseif($paper->event_type == 5) {?>10:30 - 10:55 | Nonlinear L-1 Support Vector Machines for Learning Using Privileged Information Lingfeng Niu, and Jianmin Wu |
} ?>
|
10:55 - 11:20 | The Transfer Learning Based on Relationships between Attributes Jinwei Zhao, Boqin Feng, Guirong Yan, and Longlei Dong |
} elseif($paper->event_type == 2) {?>
10:55 - 11:20 | The Transfer Learning Based on Relationships between Attributes Jinwei Zhao, Boqin Feng, Guirong Yan, and Longlei Dong |
} elseif($paper->event_type == 3) {?>
10:55 - 11:20 | The Transfer Learning Based on Relationships between Attributes | } elseif($paper->event_type == 4) {?>The Transfer Learning Based on Relationships between Attributes | } elseif($paper->event_type == 5) {?>10:55 - 11:20 | The Transfer Learning Based on Relationships between Attributes Jinwei Zhao, Boqin Feng, Guirong Yan, and Longlei Dong |
} ?>
|
11:20 - 11:45 | Overlapping Clustering with Sparseness Constraints Haibing Lu, Yuan Hong, Nick Street, Fei Wang, and Hanghang Tong |
} elseif($paper->event_type == 2) {?>
11:20 - 11:45 | Overlapping Clustering with Sparseness Constraints Haibing Lu, Yuan Hong, Nick Street, Fei Wang, and Hanghang Tong |
} elseif($paper->event_type == 3) {?>
11:20 - 11:45 | Overlapping Clustering with Sparseness Constraints | } elseif($paper->event_type == 4) {?>Overlapping Clustering with Sparseness Constraints | } elseif($paper->event_type == 5) {?>11:20 - 11:45 | Overlapping Clustering with Sparseness Constraints Haibing Lu, Yuan Hong, Nick Street, Fei Wang, and Hanghang Tong |
} ?>
|
11:45 - 13:30 | Lunch Break |
} elseif($paper->event_type == 2) {?>
11:45 - 13:30 | Lunch Break |
} elseif($paper->event_type == 3) {?>
11:45 - 13:30 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>11:45 - 13:30 | Lunch Break |
} ?>
|
13:30 - 14:30 | Invited Report Prof. Lieven De Lathauwer |
} elseif($paper->event_type == 2) {?>
13:30 - 14:30 | Invited Report Prof. Lieven De Lathauwer |
} elseif($paper->event_type == 3) {?>
13:30 - 14:30 | Invited Report | } elseif($paper->event_type == 4) {?>Invited Report | } elseif($paper->event_type == 5) {?>13:30 - 14:30 | Invited Report Prof. Lieven De Lathauwer |
} ?>
|
14:30 - 14:50 | Coffee Break |
} elseif($paper->event_type == 2) {?>
14:30 - 14:50 | Coffee Break |
} elseif($paper->event_type == 3) {?>
14:30 - 14:50 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>14:30 - 14:50 | Coffee Break |
} ?>
|
14:50 - 15:10 | Rare Events Forecasting Using a Residual-Feedback GMDH Neural Network Simon Fong |
} elseif($paper->event_type == 2) {?>
14:50 - 15:10 | Rare Events Forecasting Using a Residual-Feedback GMDH Neural Network Simon Fong |
} elseif($paper->event_type == 3) {?>
14:50 - 15:10 | Rare Events Forecasting Using a Residual-Feedback GMDH Neural Network | } elseif($paper->event_type == 4) {?>Rare Events Forecasting Using a Residual-Feedback GMDH Neural Network | } elseif($paper->event_type == 5) {?>14:50 - 15:10 | Rare Events Forecasting Using a Residual-Feedback GMDH Neural Network Simon Fong |
} ?>
|
15:10 - 15:30 | OCCAMS - An Optimal Combinatorial Covering Algorithm for Multi-document Summarization Sashka Davis, Conroy John, and Judith Schlesinger |
} elseif($paper->event_type == 2) {?>
15:10 - 15:30 | OCCAMS - An Optimal Combinatorial Covering Algorithm for Multi-document Summarization Sashka Davis, Conroy John, and Judith Schlesinger |
} elseif($paper->event_type == 3) {?>
15:10 - 15:30 | OCCAMS - An Optimal Combinatorial Covering Algorithm for Multi-document Summarization | } elseif($paper->event_type == 4) {?>OCCAMS - An Optimal Combinatorial Covering Algorithm for Multi-document Summarization | } elseif($paper->event_type == 5) {?>15:10 - 15:30 | OCCAMS - An Optimal Combinatorial Covering Algorithm for Multi-document Summarization Sashka Davis, Conroy John, and Judith Schlesinger |
} ?>
|
15:30 - 15:50 | Learning from multiple annotators : when data is hard and annotators are unreliable Chirine Wolley and Mohamed Quafafou |
} elseif($paper->event_type == 2) {?>
15:30 - 15:50 | Learning from multiple annotators : when data is hard and annotators are unreliable Chirine Wolley and Mohamed Quafafou |
} elseif($paper->event_type == 3) {?>
15:30 - 15:50 | Learning from multiple annotators : when data is hard and annotators are unreliable | } elseif($paper->event_type == 4) {?>Learning from multiple annotators : when data is hard and annotators are unreliable | } elseif($paper->event_type == 5) {?>15:30 - 15:50 | Learning from multiple annotators : when data is hard and annotators are unreliable Chirine Wolley and Mohamed Quafafou |
} ?>
|
15:50 - 16:10 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:50 - 16:10 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:50 - 16:10 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:50 - 16:10 | Coffee Break |
} ?>
|
16:10 - 16:30 | Nonlinear Unsupervised Feature Learning: How Local Similarities Lead to Global Coding Amirreza Shaban, Hamid R. Rabiee, Marzieh S. Tahaei, and Erfan Salavati |
} elseif($paper->event_type == 2) {?>
16:10 - 16:30 | Nonlinear Unsupervised Feature Learning: How Local Similarities Lead to Global Coding Amirreza Shaban, Hamid R. Rabiee, Marzieh S. Tahaei, and Erfan Salavati |
} elseif($paper->event_type == 3) {?>
16:10 - 16:30 | Nonlinear Unsupervised Feature Learning: How Local Similarities Lead to Global Coding | } elseif($paper->event_type == 4) {?>Nonlinear Unsupervised Feature Learning: How Local Similarities Lead to Global Coding | } elseif($paper->event_type == 5) {?>16:10 - 16:30 | Nonlinear Unsupervised Feature Learning: How Local Similarities Lead to Global Coding Amirreza Shaban, Hamid R. Rabiee, Marzieh S. Tahaei, and Erfan Salavati |
} ?>
|
16:30 - 16:50 | Robust Kernel Nonnegative Matrix Factorization Zhichen Xia, Chris Ding, and Edmond Chow |
} elseif($paper->event_type == 2) {?>
16:30 - 16:50 | Robust Kernel Nonnegative Matrix Factorization Zhichen Xia, Chris Ding, and Edmond Chow |
} elseif($paper->event_type == 3) {?>
16:30 - 16:50 | Robust Kernel Nonnegative Matrix Factorization | } elseif($paper->event_type == 4) {?>Robust Kernel Nonnegative Matrix Factorization | } elseif($paper->event_type == 5) {?>16:30 - 16:50 | Robust Kernel Nonnegative Matrix Factorization Zhichen Xia, Chris Ding, and Edmond Chow |
} ?>
|
16:50 - 17:10 | Regular Multiple Criteria Linear Programming for Semi-supervised Classification Zhiquan Qi, Yingjie Tian, and Yong Shi |
} elseif($paper->event_type == 2) {?>
16:50 - 17:10 | Regular Multiple Criteria Linear Programming for Semi-supervised Classification Zhiquan Qi, Yingjie Tian, and Yong Shi |
} elseif($paper->event_type == 3) {?>
16:50 - 17:10 | Regular Multiple Criteria Linear Programming for Semi-supervised Classification | } elseif($paper->event_type == 4) {?>Regular Multiple Criteria Linear Programming for Semi-supervised Classification | } elseif($paper->event_type == 5) {?>16:50 - 17:10 | Regular Multiple Criteria Linear Programming for Semi-supervised Classification Zhiquan Qi, Yingjie Tian, and Yong Shi |
} ?>
Organized by Yann-Aël Le Borgne and Evimaria Terzi
09:00 - 18:00
Room: Salle des Nation II
http://icdm2012.ua.ac.be/content/phd-forum
The aim of the Forum is to provide an international environment in which students can meet and exchange their ideas and experiences both with peers and with senior researchers from the Data Mining Community. The Forum is particularly aimed at PhD students in the early stages of their career and Master's students planning to pursue their research in a PhD programme. The session will be chaired by Yann-Aël Le Borgne and Patrick Meyer.
09:00 - 09:10 | Welcome and Introduction Yann-Aël Le Borgne |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcome and Introduction Yann-Aël Le Borgne |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcome and Introduction | } elseif($paper->event_type == 4) {?>Welcome and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcome and Introduction Yann-Aël Le Borgne |
} ?>
|
09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks Francesco Bonchi |
} elseif($paper->event_type == 2) {?>
09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks Francesco Bonchi |
} elseif($paper->event_type == 3) {?>
09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks | } elseif($paper->event_type == 4) {?>Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks | } elseif($paper->event_type == 5) {?>09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks Francesco Bonchi |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media Victor C. Liang and Vincent T.Y. Ng |
} elseif($paper->event_type == 2) {?>
10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media Victor C. Liang and Vincent T.Y. Ng |
} elseif($paper->event_type == 3) {?>
10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media | } elseif($paper->event_type == 4) {?>Modeling of Collective Synchronous Behavior on Social Media | } elseif($paper->event_type == 5) {?>10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media Victor C. Liang and Vincent T.Y. Ng |
} ?>
|
10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning Gert Loterman and Christophe Mues |
} elseif($paper->event_type == 2) {?>
10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning Gert Loterman and Christophe Mues |
} elseif($paper->event_type == 3) {?>
10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning | } elseif($paper->event_type == 4) {?>Selecting accurate and comprehensible regression algorithms through meta learning | } elseif($paper->event_type == 5) {?>10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning Gert Loterman and Christophe Mues |
} ?>
|
11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation Huiyi Hu, Yves van Gennip, Blake Hunter, Andrea L. Bertozzi and Mason A. Porter |
} elseif($paper->event_type == 2) {?>
11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation Huiyi Hu, Yves van Gennip, Blake Hunter, Andrea L. Bertozzi and Mason A. Porter |
} elseif($paper->event_type == 3) {?>
11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation | } elseif($paper->event_type == 4) {?>Multi-slice Modularity Optimization in Community Detection and Image segmentation | } elseif($paper->event_type == 5) {?>11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation Huiyi Hu, Yves van Gennip, Blake Hunter, Andrea L. Bertozzi and Mason A. Porter |
} ?>
|
11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking Alexandros Karakasidis and Vassilios S. Verykios |
} elseif($paper->event_type == 2) {?>
11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking Alexandros Karakasidis and Vassilios S. Verykios |
} elseif($paper->event_type == 3) {?>
11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking | } elseif($paper->event_type == 4) {?>Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking | } elseif($paper->event_type == 5) {?>11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking Alexandros Karakasidis and Vassilios S. Verykios |
} ?>
|
11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach Tanmay Basu and C. A. Murthy |
} elseif($paper->event_type == 2) {?>
11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach Tanmay Basu and C. A. Murthy |
} elseif($paper->event_type == 3) {?>
11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach | } elseif($paper->event_type == 4) {?>Effective Text Classification by a Supervised Feature Selection Approach | } elseif($paper->event_type == 5) {?>11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach Tanmay Basu and C. A. Murthy |
} ?>
|
12:10 - 12:30 | Active Learning based Rule Extraction for Regression Enric Junqué de Fortuny and David Martens |
} elseif($paper->event_type == 2) {?>
12:10 - 12:30 | Active Learning based Rule Extraction for Regression Enric Junqué de Fortuny and David Martens |
} elseif($paper->event_type == 3) {?>
12:10 - 12:30 | Active Learning based Rule Extraction for Regression | } elseif($paper->event_type == 4) {?>Active Learning based Rule Extraction for Regression | } elseif($paper->event_type == 5) {?>12:10 - 12:30 | Active Learning based Rule Extraction for Regression Enric Junqué de Fortuny and David Martens |
} ?>
|
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:30 - 14:00 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:30 - 14:00 | Lunch Break |
} ?>
|
14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation Francois-Xavier Willems |
} elseif($paper->event_type == 2) {?>
14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation Francois-Xavier Willems |
} elseif($paper->event_type == 3) {?>
14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation | } elseif($paper->event_type == 4) {?>Invited Talk: How to Make an Effective Presentation | } elseif($paper->event_type == 5) {?>14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation Francois-Xavier Willems |
} ?>
|
14:50 - 15:10 | Imputation of HLA genes from SNP data Vanja Paunić, Michael Steinbach, Vipin Kumar and Martin Maiers |
} elseif($paper->event_type == 2) {?>
14:50 - 15:10 | Imputation of HLA genes from SNP data Vanja Paunić, Michael Steinbach, Vipin Kumar and Martin Maiers |
} elseif($paper->event_type == 3) {?>
14:50 - 15:10 | Imputation of HLA genes from SNP data | } elseif($paper->event_type == 4) {?>Imputation of HLA genes from SNP data | } elseif($paper->event_type == 5) {?>14:50 - 15:10 | Imputation of HLA genes from SNP data Vanja Paunić, Michael Steinbach, Vipin Kumar and Martin Maiers |
} ?>
|
15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner Bart Minnaert and David Martens |
} elseif($paper->event_type == 2) {?>
15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner Bart Minnaert and David Martens |
} elseif($paper->event_type == 3) {?>
15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner | } elseif($paper->event_type == 4) {?>Towards a Particle Swarm Optimization-Based Regression Rule Miner | } elseif($paper->event_type == 5) {?>15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner Bart Minnaert and David Martens |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 17:00 | Poster session |
} elseif($paper->event_type == 2) {?>
16:00 - 17:00 | Poster session |
} elseif($paper->event_type == 3) {?>
16:00 - 17:00 | Poster session | } elseif($paper->event_type == 4) {?>Poster session | } elseif($paper->event_type == 5) {?>16:00 - 17:00 | Poster session |
} ?>
|
17:00 - 18:00 | Conclusions |
} elseif($paper->event_type == 2) {?>
17:00 - 18:00 | Conclusions |
} elseif($paper->event_type == 3) {?>
17:00 - 18:00 | Conclusions | } elseif($paper->event_type == 4) {?>Conclusions | } elseif($paper->event_type == 5) {?>17:00 - 18:00 | Conclusions |
} ?>
Organized by Anna Monreale, Dino Pedreschi, Chedy Raissi and Yucel Saygin
14:00 - 18:00
Room: Tintoretto II
http://kdd.isti.cnr.it/pinsoda
One of the most fascinating challenges of our time is to understand the complexity of the global interconnected society we inhabit. Social data analysis can help us understand complex social phenomena, such as mobility, relationships and social connections, economic trends, spread of epidemics, opinion diffusion, sustainability and so on.
The opportunities of discovering knowledge from social data increase with the risk of privacy violation.
Privacy intrusion jeopardizes trust: if not adequately countered, they can undermine the idea of a fair and democratic knowledge society.
14:00 - 14:15 | Workshop Opening |
} elseif($paper->event_type == 2) {?>
14:00 - 14:15 | Workshop Opening |
} elseif($paper->event_type == 3) {?>
14:00 - 14:15 | Workshop Opening | } elseif($paper->event_type == 4) {?>Workshop Opening | } elseif($paper->event_type == 5) {?>14:00 - 14:15 | Workshop Opening |
} ?>
|
14:15 - 15:00 | Invited Talk: Discrimination data analysis and its relations with privacy Salvatore Ruggieri |
} elseif($paper->event_type == 2) {?>
14:15 - 15:00 | Invited Talk: Discrimination data analysis and its relations with privacy Salvatore Ruggieri |
} elseif($paper->event_type == 3) {?>
14:15 - 15:00 | Invited Talk: Discrimination data analysis and its relations with privacy | } elseif($paper->event_type == 4) {?>Invited Talk: Discrimination data analysis and its relations with privacy | } elseif($paper->event_type == 5) {?>14:15 - 15:00 | Invited Talk: Discrimination data analysis and its relations with privacy Salvatore Ruggieri |
} ?>
|
15:00 - 15:30 | A Practical System for Privacy-Preserving Collaborative Filtering Richard Chow, Manas Pathak, and Cong Wang |
} elseif($paper->event_type == 2) {?>
15:00 - 15:30 | A Practical System for Privacy-Preserving Collaborative Filtering Richard Chow, Manas Pathak, and Cong Wang |
} elseif($paper->event_type == 3) {?>
15:00 - 15:30 | A Practical System for Privacy-Preserving Collaborative Filtering | } elseif($paper->event_type == 4) {?>A Practical System for Privacy-Preserving Collaborative Filtering | } elseif($paper->event_type == 5) {?>15:00 - 15:30 | A Practical System for Privacy-Preserving Collaborative Filtering Richard Chow, Manas Pathak, and Cong Wang |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 16:30 | Exploiting Dynamic Privacy in Socially Regularized Recommenders Ramona Bunea, Shahab Mokarizadeh, Nima Dokoohaki, and Mihhail Matski |
} elseif($paper->event_type == 2) {?>
16:00 - 16:30 | Exploiting Dynamic Privacy in Socially Regularized Recommenders Ramona Bunea, Shahab Mokarizadeh, Nima Dokoohaki, and Mihhail Matski |
} elseif($paper->event_type == 3) {?>
16:00 - 16:30 | Exploiting Dynamic Privacy in Socially Regularized Recommenders | } elseif($paper->event_type == 4) {?>Exploiting Dynamic Privacy in Socially Regularized Recommenders | } elseif($paper->event_type == 5) {?>16:00 - 16:30 | Exploiting Dynamic Privacy in Socially Regularized Recommenders Ramona Bunea, Shahab Mokarizadeh, Nima Dokoohaki, and Mihhail Matski |
} ?>
|
16:30 - 17:00 | Beware of What You Share: Inferring Home Location in Social Networks Tatiana Pontes, Gabriel Magno, Marisa Vasconcelos, Aditi Gupta, Jussara Almeida, Ponnurangam Kumaraguru, and Virgilio Almeida |
} elseif($paper->event_type == 2) {?>
16:30 - 17:00 | Beware of What You Share: Inferring Home Location in Social Networks Tatiana Pontes, Gabriel Magno, Marisa Vasconcelos, Aditi Gupta, Jussara Almeida, Ponnurangam Kumaraguru, and Virgilio Almeida |
} elseif($paper->event_type == 3) {?>
16:30 - 17:00 | Beware of What You Share: Inferring Home Location in Social Networks | } elseif($paper->event_type == 4) {?>Beware of What You Share: Inferring Home Location in Social Networks | } elseif($paper->event_type == 5) {?>16:30 - 17:00 | Beware of What You Share: Inferring Home Location in Social Networks Tatiana Pontes, Gabriel Magno, Marisa Vasconcelos, Aditi Gupta, Jussara Almeida, Ponnurangam Kumaraguru, and Virgilio Almeida |
} ?>
|
17:00 - 17:30 | Interactive Grouping of Friends in OSN: Towards Online Context Management Bo Gao, Bettina Berendt, Dave Clarke, Ralf De Wolf, Thomas Peetz, Jo Pierson, and Rula Sayaf |
} elseif($paper->event_type == 2) {?>
17:00 - 17:30 | Interactive Grouping of Friends in OSN: Towards Online Context Management Bo Gao, Bettina Berendt, Dave Clarke, Ralf De Wolf, Thomas Peetz, Jo Pierson, and Rula Sayaf |
} elseif($paper->event_type == 3) {?>
17:00 - 17:30 | Interactive Grouping of Friends in OSN: Towards Online Context Management | } elseif($paper->event_type == 4) {?>Interactive Grouping of Friends in OSN: Towards Online Context Management | } elseif($paper->event_type == 5) {?>17:00 - 17:30 | Interactive Grouping of Friends in OSN: Towards Online Context Management Bo Gao, Bettina Berendt, Dave Clarke, Ralf De Wolf, Thomas Peetz, Jo Pierson, and Rula Sayaf |
} ?>
|
17:30 - 18:00 | Measuring Local Topological Anonymity in Social Networks Gábor György Gulyás and Sándor Imre |
} elseif($paper->event_type == 2) {?>
17:30 - 18:00 | Measuring Local Topological Anonymity in Social Networks Gábor György Gulyás and Sándor Imre |
} elseif($paper->event_type == 3) {?>
17:30 - 18:00 | Measuring Local Topological Anonymity in Social Networks | } elseif($paper->event_type == 4) {?>Measuring Local Topological Anonymity in Social Networks | } elseif($paper->event_type == 5) {?>17:30 - 18:00 | Measuring Local Topological Anonymity in Social Networks Gábor György Gulyás and Sándor Imre |
} ?>
Organized by Tijl De Bie, Kleanthis-Nikolaos (Akis) Kontonasios and Eirini Spyropoulou
08:30 - 18:00
Room: Rembrandt Room
https://sites.google.com/site/ptdm2012
The goal of this ICDM 2012 workshop is to help closing the gap between data mining practice and theory. To this end, we intend to explore what is the essence of exploratory data mining and how to formalize it in a useful but theoretically well-founded way.
The workshop is motivated by a widely perceived discrepancy between theoretical data mining prototypes and practitioners' requirements. A notable example is frequent pattern mining. Despite its attractive theoretical foundations, the practical use of frequent pattern mining methods has been limited. This is due to a difficulty to overcome issues, such as the pattern explosion problem and a discrepancy between usefulness and frequency. These issues have been addressed to some extent in the past 15 years, through heuristic post-processing steps and through rigorously motivated adaptations. The multitude of possible solution strategies has unfortunately to a large extent undermined the original elegance, and made it hard for practitioners to understand how to use these techniques.
The problem is however not restricted to frequent pattern mining alone. The multitude of available methods for typical exploratory data mining problems such as (subspace) clustering and dimensionality reduction is such that practitioners face a daunting task in selecting a suitable method. Additionally to the usability issues, less attention has been given on pattern mining methods for relational databases. Although most real world databases are relational, most pattern mining research has focused on one-table data.
We believe the core reasons for these difficulties are:
08:30 - 09:00 | Introduction Tijl De Bie, Akis Kontonasios and Eirini Spyropoulou |
} elseif($paper->event_type == 2) {?>
08:30 - 09:00 | Introduction Tijl De Bie, Akis Kontonasios and Eirini Spyropoulou |
} elseif($paper->event_type == 3) {?>
08:30 - 09:00 | Introduction | } elseif($paper->event_type == 4) {?>Introduction | } elseif($paper->event_type == 5) {?>08:30 - 09:00 | Introduction Tijl De Bie, Akis Kontonasios and Eirini Spyropoulou |
} ?>
|
09:00 - 10:00 | Keynote Talk Kathleen Marchal, Universiteit Gent, Belgium |
} elseif($paper->event_type == 2) {?>
09:00 - 10:00 | Keynote Talk Kathleen Marchal, Universiteit Gent, Belgium |
} elseif($paper->event_type == 3) {?>
09:00 - 10:00 | Keynote Talk | } elseif($paper->event_type == 4) {?>Keynote Talk | } elseif($paper->event_type == 5) {?>09:00 - 10:00 | Keynote Talk Kathleen Marchal, Universiteit Gent, Belgium |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 11:30 | Keynote Talk: From Inductive Querying to Declarative Modelling for Data Mining Luc De Raedt, KU Leuven, Belgium |
} elseif($paper->event_type == 2) {?>
10:30 - 11:30 | Keynote Talk: From Inductive Querying to Declarative Modelling for Data Mining Luc De Raedt, KU Leuven, Belgium |
} elseif($paper->event_type == 3) {?>
10:30 - 11:30 | Keynote Talk: From Inductive Querying to Declarative Modelling for Data Mining | } elseif($paper->event_type == 4) {?>Keynote Talk: From Inductive Querying to Declarative Modelling for Data Mining | } elseif($paper->event_type == 5) {?>10:30 - 11:30 | Keynote Talk: From Inductive Querying to Declarative Modelling for Data Mining Luc De Raedt, KU Leuven, Belgium |
} ?>
|
11:30 - 11:50 | Thorough analysis of log data with dependency rules: Practical solutions and theoretical challenges Wilhelmiina Hämäläinen |
} elseif($paper->event_type == 2) {?>
11:30 - 11:50 | Thorough analysis of log data with dependency rules: Practical solutions and theoretical challenges Wilhelmiina Hämäläinen |
} elseif($paper->event_type == 3) {?>
11:30 - 11:50 | Thorough analysis of log data with dependency rules: Practical solutions and theoretical challenges | } elseif($paper->event_type == 4) {?>Thorough analysis of log data with dependency rules: Practical solutions and theoretical challenges | } elseif($paper->event_type == 5) {?>11:30 - 11:50 | Thorough analysis of log data with dependency rules: Practical solutions and theoretical challenges Wilhelmiina Hämäläinen |
} ?>
|
11:50 - 12:10 | Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner Christiane Kamdem Kengne, Leon Constantin Fopa, Noha Ibrahim, Alexandre Termier, Marie-Christine Rousset and Takashi Washio |
} elseif($paper->event_type == 2) {?>
11:50 - 12:10 | Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner Christiane Kamdem Kengne, Leon Constantin Fopa, Noha Ibrahim, Alexandre Termier, Marie-Christine Rousset and Takashi Washio |
} elseif($paper->event_type == 3) {?>
11:50 - 12:10 | Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner | } elseif($paper->event_type == 4) {?>Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner | } elseif($paper->event_type == 5) {?>11:50 - 12:10 | Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner Christiane Kamdem Kengne, Leon Constantin Fopa, Noha Ibrahim, Alexandre Termier, Marie-Christine Rousset and Takashi Washio |
} ?>
|
12:10 - 12:30 | Generalized Expansion Dimension Michael Nett, Michael E. Houle, and Hisashi Kashima |
} elseif($paper->event_type == 2) {?>
12:10 - 12:30 | Generalized Expansion Dimension Michael Nett, Michael E. Houle, and Hisashi Kashima |
} elseif($paper->event_type == 3) {?>
12:10 - 12:30 | Generalized Expansion Dimension | } elseif($paper->event_type == 4) {?>Generalized Expansion Dimension | } elseif($paper->event_type == 5) {?>12:10 - 12:30 | Generalized Expansion Dimension Michael Nett, Michael E. Houle, and Hisashi Kashima |
} ?>
|
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:30 - 14:00 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:30 - 14:00 | Lunch Break |
} ?>
|
14:00 - 15:00 | Keynote Talk Kai Puolamäki, Aalto University, Finland |
} elseif($paper->event_type == 2) {?>
14:00 - 15:00 | Keynote Talk Kai Puolamäki, Aalto University, Finland |
} elseif($paper->event_type == 3) {?>
14:00 - 15:00 | Keynote Talk | } elseif($paper->event_type == 4) {?>Keynote Talk | } elseif($paper->event_type == 5) {?>14:00 - 15:00 | Keynote Talk Kai Puolamäki, Aalto University, Finland |
} ?>
|
15:00 - 15:20 | Generating Diverse Realistic Data Sets for Episode Mining Albrecht Zimmermann |
} elseif($paper->event_type == 2) {?>
15:00 - 15:20 | Generating Diverse Realistic Data Sets for Episode Mining Albrecht Zimmermann |
} elseif($paper->event_type == 3) {?>
15:00 - 15:20 | Generating Diverse Realistic Data Sets for Episode Mining | } elseif($paper->event_type == 4) {?>Generating Diverse Realistic Data Sets for Episode Mining | } elseif($paper->event_type == 5) {?>15:00 - 15:20 | Generating Diverse Realistic Data Sets for Episode Mining Albrecht Zimmermann |
} ?>
|
15:20 - 15:40 | Logical Itemset Mining Shailesh Kumar, Chandrashekar V. and C.V. Jawahar |
} elseif($paper->event_type == 2) {?>
15:20 - 15:40 | Logical Itemset Mining Shailesh Kumar, Chandrashekar V. and C.V. Jawahar |
} elseif($paper->event_type == 3) {?>
15:20 - 15:40 | Logical Itemset Mining | } elseif($paper->event_type == 4) {?>Logical Itemset Mining | } elseif($paper->event_type == 5) {?>15:20 - 15:40 | Logical Itemset Mining Shailesh Kumar, Chandrashekar V. and C.V. Jawahar |
} ?>
|
15:40 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:40 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:40 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:40 - 16:00 | Coffee Break |
} ?>
|
16:00 - 17:00 | Keynote Talk Pieter Adriaans, Universiteit van Amsterdam, The Netherlands |
} elseif($paper->event_type == 2) {?>
16:00 - 17:00 | Keynote Talk Pieter Adriaans, Universiteit van Amsterdam, The Netherlands |
} elseif($paper->event_type == 3) {?>
16:00 - 17:00 | Keynote Talk | } elseif($paper->event_type == 4) {?>Keynote Talk | } elseif($paper->event_type == 5) {?>16:00 - 17:00 | Keynote Talk Pieter Adriaans, Universiteit van Amsterdam, The Netherlands |
} ?>
|
17:00 - 18:00 | Panel discussion TBC |
} elseif($paper->event_type == 2) {?>
17:00 - 18:00 | Panel discussion TBC |
} elseif($paper->event_type == 3) {?>
17:00 - 18:00 | Panel discussion | } elseif($paper->event_type == 4) {?>Panel discussion | } elseif($paper->event_type == 5) {?>17:00 - 18:00 | Panel discussion TBC |
} ?>
Organized by Honghua Dai, James Liu, and Evgueni Smirnov
08:30 - 11:50
Room: Turner
http://www.deakin.edu.au/individuals-sites/?request=~hdai/RIKD12
The 2012 IEEE ICDM workshop ``Reliability Issues in Knowledge Discovery' aims at presenting the recent advances in the emerging field of reliable knowledge discovery from data. This year the workshop focus has shifted from theory and methods towards experimental studies and applications. The latter can be seen in the program consisting of 6 papers and an invited talk.
08:30 - 08:40 | Welcoming and Introduction Honghua Dai and Evgueni Smirnov |
} elseif($paper->event_type == 2) {?>
08:30 - 08:40 | Welcoming and Introduction Honghua Dai and Evgueni Smirnov |
} elseif($paper->event_type == 3) {?>
08:30 - 08:40 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>08:30 - 08:40 | Welcoming and Introduction Honghua Dai and Evgueni Smirnov |
} ?>
|
08:40 - 09:20 | Invited Talk: Reliable Prediction of Survival of Cancer Patients using Multi-Centric Distributed Learning Georgi Nalbantov |
} elseif($paper->event_type == 2) {?>
08:40 - 09:20 | Invited Talk: Reliable Prediction of Survival of Cancer Patients using Multi-Centric Distributed Learning Georgi Nalbantov |
} elseif($paper->event_type == 3) {?>
08:40 - 09:20 | Invited Talk: Reliable Prediction of Survival of Cancer Patients using Multi-Centric Distributed Learning | } elseif($paper->event_type == 4) {?>Invited Talk: Reliable Prediction of Survival of Cancer Patients using Multi-Centric Distributed Learning | } elseif($paper->event_type == 5) {?>08:40 - 09:20 | Invited Talk: Reliable Prediction of Survival of Cancer Patients using Multi-Centric Distributed Learning Georgi Nalbantov |
} ?>
|
09:20 - 09:40 | A Weighted Support Vector Data Description based on Rough Neighborhood Approximation Yanxing Hu, James N. K. Liu, Yuan Wang and Lucas Lai |
} elseif($paper->event_type == 2) {?>
09:20 - 09:40 | A Weighted Support Vector Data Description based on Rough Neighborhood Approximation Yanxing Hu, James N. K. Liu, Yuan Wang and Lucas Lai |
} elseif($paper->event_type == 3) {?>
09:20 - 09:40 | A Weighted Support Vector Data Description based on Rough Neighborhood Approximation | } elseif($paper->event_type == 4) {?>A Weighted Support Vector Data Description based on Rough Neighborhood Approximation | } elseif($paper->event_type == 5) {?>09:20 - 09:40 | A Weighted Support Vector Data Description based on Rough Neighborhood Approximation Yanxing Hu, James N. K. Liu, Yuan Wang and Lucas Lai |
} ?>
|
09:40 - 10:00 | Bootstrap Confidence Intervals in DirectLiNGAM Kittitat Thamvitayakul, Shohei Shimizu, Tsuyoshi Ueno, Takashi Washio, and Tatsuya Tashiro |
} elseif($paper->event_type == 2) {?>
09:40 - 10:00 | Bootstrap Confidence Intervals in DirectLiNGAM Kittitat Thamvitayakul, Shohei Shimizu, Tsuyoshi Ueno, Takashi Washio, and Tatsuya Tashiro |
} elseif($paper->event_type == 3) {?>
09:40 - 10:00 | Bootstrap Confidence Intervals in DirectLiNGAM | } elseif($paper->event_type == 4) {?>Bootstrap Confidence Intervals in DirectLiNGAM | } elseif($paper->event_type == 5) {?>09:40 - 10:00 | Bootstrap Confidence Intervals in DirectLiNGAM Kittitat Thamvitayakul, Shohei Shimizu, Tsuyoshi Ueno, Takashi Washio, and Tatsuya Tashiro |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 10:50 | Reliable Knowledge Discovery with A Minimal Causal Model Inducer Honghua Dai, Sarah Johnston, and Min Gan |
} elseif($paper->event_type == 2) {?>
10:30 - 10:50 | Reliable Knowledge Discovery with A Minimal Causal Model Inducer Honghua Dai, Sarah Johnston, and Min Gan |
} elseif($paper->event_type == 3) {?>
10:30 - 10:50 | Reliable Knowledge Discovery with A Minimal Causal Model Inducer | } elseif($paper->event_type == 4) {?>Reliable Knowledge Discovery with A Minimal Causal Model Inducer | } elseif($paper->event_type == 5) {?>10:30 - 10:50 | Reliable Knowledge Discovery with A Minimal Causal Model Inducer Honghua Dai, Sarah Johnston, and Min Gan |
} ?>
|
10:50 - 11:10 | The PerfSim Algorithm for Concept Drift Detection in Imbalanced Data Daniel Antwi, Herna Viktor, and Nathalie Japkowicz |
} elseif($paper->event_type == 2) {?>
10:50 - 11:10 | The PerfSim Algorithm for Concept Drift Detection in Imbalanced Data Daniel Antwi, Herna Viktor, and Nathalie Japkowicz |
} elseif($paper->event_type == 3) {?>
10:50 - 11:10 | The PerfSim Algorithm for Concept Drift Detection in Imbalanced Data | } elseif($paper->event_type == 4) {?>The PerfSim Algorithm for Concept Drift Detection in Imbalanced Data | } elseif($paper->event_type == 5) {?>10:50 - 11:10 | The PerfSim Algorithm for Concept Drift Detection in Imbalanced Data Daniel Antwi, Herna Viktor, and Nathalie Japkowicz |
} ?>
|
11:10 - 11:30 | Outlier Detection in Logistic Regression: A Quest for Reliable Knowledge from Predictive Modeling and Classification Abdul Nurunnabi and Geoff West |
} elseif($paper->event_type == 2) {?>
11:10 - 11:30 | Outlier Detection in Logistic Regression: A Quest for Reliable Knowledge from Predictive Modeling and Classification Abdul Nurunnabi and Geoff West |
} elseif($paper->event_type == 3) {?>
11:10 - 11:30 | Outlier Detection in Logistic Regression: A Quest for Reliable Knowledge from Predictive Modeling and Classification | } elseif($paper->event_type == 4) {?>Outlier Detection in Logistic Regression: A Quest for Reliable Knowledge from Predictive Modeling and Classification | } elseif($paper->event_type == 5) {?>11:10 - 11:30 | Outlier Detection in Logistic Regression: A Quest for Reliable Knowledge from Predictive Modeling and Classification Abdul Nurunnabi and Geoff West |
} ?>
|
11:30 - 11:50 | Model Selection with Combining Valid and Optimal Prediction Intervals Darko Pevec and Igor Kononenko |
} elseif($paper->event_type == 2) {?>
11:30 - 11:50 | Model Selection with Combining Valid and Optimal Prediction Intervals Darko Pevec and Igor Kononenko |
} elseif($paper->event_type == 3) {?>
11:30 - 11:50 | Model Selection with Combining Valid and Optimal Prediction Intervals | } elseif($paper->event_type == 4) {?>Model Selection with Combining Valid and Optimal Prediction Intervals | } elseif($paper->event_type == 5) {?>11:30 - 11:50 | Model Selection with Combining Valid and Optimal Prediction Intervals Darko Pevec and Igor Kononenko |
} ?>
Organized by Erik Cambria, Bing Liu, Yunqing Xia, Catherine Havasi
09:00 - 18:00
Room: Memling
http://sentic.net/sentire
Sentiment Elicitation from Natural Text for Information Retrieval and Extraction (SENTIRE) is the IEEE ICDM workshop series on opinion mining. The term SENTIRE comes from the Latin feel and it is root of words such as sentiment and sensation. The main aim of SENTIRE is to explore the new frontiers of opinion mining and sentiment analysis by proposing novel techniques in fields such as AI, Semantic Web, knowledge-based systems, adaptive and transfer learning, in order to more efficiently retrieve and extract social information from the Web.
09:00 - 09:10 | Welcoming and Introduction Erik Cambria |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcoming and Introduction Erik Cambria |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcoming and Introduction Erik Cambria |
} ?>
|
09:10 - 10:00 | Keynote Talk: Multimodal Sentiment Analysis Rada Mihalcea |
} elseif($paper->event_type == 2) {?>
09:10 - 10:00 | Keynote Talk: Multimodal Sentiment Analysis Rada Mihalcea |
} elseif($paper->event_type == 3) {?>
09:10 - 10:00 | Keynote Talk: Multimodal Sentiment Analysis | } elseif($paper->event_type == 4) {?>Keynote Talk: Multimodal Sentiment Analysis | } elseif($paper->event_type == 5) {?>09:10 - 10:00 | Keynote Talk: Multimodal Sentiment Analysis Rada Mihalcea |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 11:00 | How Much Supervision? Corpus-Based Lexeme Sentiment Estimation Aleksander Wawer and Dominika Rogozinska |
} elseif($paper->event_type == 2) {?>
10:30 - 11:00 | How Much Supervision? Corpus-Based Lexeme Sentiment Estimation Aleksander Wawer and Dominika Rogozinska |
} elseif($paper->event_type == 3) {?>
10:30 - 11:00 | How Much Supervision? Corpus-Based Lexeme Sentiment Estimation | } elseif($paper->event_type == 4) {?>How Much Supervision? Corpus-Based Lexeme Sentiment Estimation | } elseif($paper->event_type == 5) {?>10:30 - 11:00 | How Much Supervision? Corpus-Based Lexeme Sentiment Estimation Aleksander Wawer and Dominika Rogozinska |
} ?>
|
11:00 - 11:30 | Domain Adaptation using Domain Similarity- and Domain Complexity-based Instance Selection Robert Remus |
} elseif($paper->event_type == 2) {?>
11:00 - 11:30 | Domain Adaptation using Domain Similarity- and Domain Complexity-based Instance Selection Robert Remus |
} elseif($paper->event_type == 3) {?>
11:00 - 11:30 | Domain Adaptation using Domain Similarity- and Domain Complexity-based Instance Selection | } elseif($paper->event_type == 4) {?>Domain Adaptation using Domain Similarity- and Domain Complexity-based Instance Selection | } elseif($paper->event_type == 5) {?>11:00 - 11:30 | Domain Adaptation using Domain Similarity- and Domain Complexity-based Instance Selection Robert Remus |
} ?>
|
11:30 - 12:00 | Sentiment polarity classification using statistical data compression models Dominique Ziegelmayer and Rainer Schrader |
} elseif($paper->event_type == 2) {?>
11:30 - 12:00 | Sentiment polarity classification using statistical data compression models Dominique Ziegelmayer and Rainer Schrader |
} elseif($paper->event_type == 3) {?>
11:30 - 12:00 | Sentiment polarity classification using statistical data compression models | } elseif($paper->event_type == 4) {?>Sentiment polarity classification using statistical data compression models | } elseif($paper->event_type == 5) {?>11:30 - 12:00 | Sentiment polarity classification using statistical data compression models Dominique Ziegelmayer and Rainer Schrader |
} ?>
|
12:00 - 13:30 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:00 - 13:30 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:00 - 13:30 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:00 - 13:30 | Lunch Break |
} ?>
|
13:30 - 14:00 | Representing and Resolving Negation for Sentiment Analysis Emanuele Lapponi, Jonathon Read, and Lilja Ovrelid |
} elseif($paper->event_type == 2) {?>
13:30 - 14:00 | Representing and Resolving Negation for Sentiment Analysis Emanuele Lapponi, Jonathon Read, and Lilja Ovrelid |
} elseif($paper->event_type == 3) {?>
13:30 - 14:00 | Representing and Resolving Negation for Sentiment Analysis | } elseif($paper->event_type == 4) {?>Representing and Resolving Negation for Sentiment Analysis | } elseif($paper->event_type == 5) {?>13:30 - 14:00 | Representing and Resolving Negation for Sentiment Analysis Emanuele Lapponi, Jonathon Read, and Lilja Ovrelid |
} ?>
|
14:00 - 14:30 | Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining Sheng Huang, Xinlan Liu, Xueping Peng, and Zhendong Niu |
} elseif($paper->event_type == 2) {?>
14:00 - 14:30 | Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining Sheng Huang, Xinlan Liu, Xueping Peng, and Zhendong Niu |
} elseif($paper->event_type == 3) {?>
14:00 - 14:30 | Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining | } elseif($paper->event_type == 4) {?>Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining | } elseif($paper->event_type == 5) {?>14:00 - 14:30 | Fine-grained Product Features Extraction and Categorization in Reviews Opinion Mining Sheng Huang, Xinlan Liu, Xueping Peng, and Zhendong Niu |
} ?>
|
14:30 - 15:00 | Subjectivity-Based Features for Sentiment Classification: A Study on Two Lexicons Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin |
} elseif($paper->event_type == 2) {?>
14:30 - 15:00 | Subjectivity-Based Features for Sentiment Classification: A Study on Two Lexicons Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin |
} elseif($paper->event_type == 3) {?>
14:30 - 15:00 | Subjectivity-Based Features for Sentiment Classification: A Study on Two Lexicons | } elseif($paper->event_type == 4) {?>Subjectivity-Based Features for Sentiment Classification: A Study on Two Lexicons | } elseif($paper->event_type == 5) {?>14:30 - 15:00 | Subjectivity-Based Features for Sentiment Classification: A Study on Two Lexicons Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin |
} ?>
|
15:00 - 15:30 | Learning Domain-Specific Polarity Lexicons Gulsen Demiroz, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin |
} elseif($paper->event_type == 2) {?>
15:00 - 15:30 | Learning Domain-Specific Polarity Lexicons Gulsen Demiroz, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin |
} elseif($paper->event_type == 3) {?>
15:00 - 15:30 | Learning Domain-Specific Polarity Lexicons | } elseif($paper->event_type == 4) {?>Learning Domain-Specific Polarity Lexicons | } elseif($paper->event_type == 5) {?>15:00 - 15:30 | Learning Domain-Specific Polarity Lexicons Gulsen Demiroz, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 16:30 | A Regularized Recommendation Algorithm with Probabilistic Sentiment-Ratings Filipa Peleja, Pedro Dias, and Joao Magalhaes |
} elseif($paper->event_type == 2) {?>
16:00 - 16:30 | A Regularized Recommendation Algorithm with Probabilistic Sentiment-Ratings Filipa Peleja, Pedro Dias, and Joao Magalhaes |
} elseif($paper->event_type == 3) {?>
16:00 - 16:30 | A Regularized Recommendation Algorithm with Probabilistic Sentiment-Ratings | } elseif($paper->event_type == 4) {?>A Regularized Recommendation Algorithm with Probabilistic Sentiment-Ratings | } elseif($paper->event_type == 5) {?>16:00 - 16:30 | A Regularized Recommendation Algorithm with Probabilistic Sentiment-Ratings Filipa Peleja, Pedro Dias, and Joao Magalhaes |
} ?>
|
16:30 - 17:00 | Enriching SenticNet Polarity Scores Through Semi-Supervised Fuzzy Clustering Soujanya Poria, Alexandar Gelbukh, Erik Cambria, Dipankar Das, Sivaji Bandyopadhyay |
} elseif($paper->event_type == 2) {?>
16:30 - 17:00 | Enriching SenticNet Polarity Scores Through Semi-Supervised Fuzzy Clustering Soujanya Poria, Alexandar Gelbukh, Erik Cambria, Dipankar Das, Sivaji Bandyopadhyay |
} elseif($paper->event_type == 3) {?>
16:30 - 17:00 | Enriching SenticNet Polarity Scores Through Semi-Supervised Fuzzy Clustering | } elseif($paper->event_type == 4) {?>Enriching SenticNet Polarity Scores Through Semi-Supervised Fuzzy Clustering | } elseif($paper->event_type == 5) {?>16:30 - 17:00 | Enriching SenticNet Polarity Scores Through Semi-Supervised Fuzzy Clustering Soujanya Poria, Alexandar Gelbukh, Erik Cambria, Dipankar Das, Sivaji Bandyopadhyay |
} ?>
|
17:00 - 17:30 | Full Spectrum Opinion Mining: Integrating Domain, Syntactic and Lexical Knowledge Daniel Olsher |
} elseif($paper->event_type == 2) {?>
17:00 - 17:30 | Full Spectrum Opinion Mining: Integrating Domain, Syntactic and Lexical Knowledge Daniel Olsher |
} elseif($paper->event_type == 3) {?>
17:00 - 17:30 | Full Spectrum Opinion Mining: Integrating Domain, Syntactic and Lexical Knowledge | } elseif($paper->event_type == 4) {?>Full Spectrum Opinion Mining: Integrating Domain, Syntactic and Lexical Knowledge | } elseif($paper->event_type == 5) {?>17:00 - 17:30 | Full Spectrum Opinion Mining: Integrating Domain, Syntactic and Lexical Knowledge Daniel Olsher |
} ?>
|
17:30 - 18:00 | Concluding Remarks Erik Cambria |
} elseif($paper->event_type == 2) {?>
17:30 - 18:00 | Concluding Remarks Erik Cambria |
} elseif($paper->event_type == 3) {?>
17:30 - 18:00 | Concluding Remarks | } elseif($paper->event_type == 4) {?>Concluding Remarks | } elseif($paper->event_type == 5) {?>17:30 - 18:00 | Concluding Remarks Erik Cambria |
} ?>
Organized by Qiuming Zhu and Nolan Hemmatazad
08:30 - 10:45
Room: Alto + Mezzo
https://sites.google.com/a/unomaha.edu/smam/
Online social networks like Facebook and Twitter have witnessed explosive growth over the course of the past decade. The use of these networks and the social features of other sites or applications intersects with nearly every facet of our lives, defining and evolving the nature of our social interactions. This phenomenal surge of interest and adoption of online social networks and other social computing utilities creates an outstanding opportunity for those interested in collecting or analyzing real world data. Further, it provides a testing ground for exploring new methods of analyzing and handling data at scales seldom seen before. The goal of the workshop on Social Media Analysis and Mining (SMAM 2012) is to provide a forum for academic researchers, students, practitioners, and others with an interest in online social network analysis and data mining concepts to come together and share their ideas, network, and learn new methods for tackling complex problems in these exciting fields.
08:30 - 08:45 | Welcoming and Introduction Qiuming Zhu |
} elseif($paper->event_type == 2) {?>
08:30 - 08:45 | Welcoming and Introduction Qiuming Zhu |
} elseif($paper->event_type == 3) {?>
08:30 - 08:45 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>08:30 - 08:45 | Welcoming and Introduction Qiuming Zhu |
} ?>
|
08:45 - 09:05 | Online Social Behavior in Twitter: A Literature Review Olav Aarts, Peter-Paul van Maanen, Tanneke Ouboter and Jan Maarten Schraagen |
} elseif($paper->event_type == 2) {?>
08:45 - 09:05 | Online Social Behavior in Twitter: A Literature Review Olav Aarts, Peter-Paul van Maanen, Tanneke Ouboter and Jan Maarten Schraagen |
} elseif($paper->event_type == 3) {?>
08:45 - 09:05 | Online Social Behavior in Twitter: A Literature Review | } elseif($paper->event_type == 4) {?>Online Social Behavior in Twitter: A Literature Review | } elseif($paper->event_type == 5) {?>08:45 - 09:05 | Online Social Behavior in Twitter: A Literature Review Olav Aarts, Peter-Paul van Maanen, Tanneke Ouboter and Jan Maarten Schraagen |
} ?>
|
09:05 - 09:25 | Twitter Volume, Current Spending, and Weekday Norms Predict Consumer Spending Three Days in Advance Justin Stewart, Homer Strong and Mark Bedau |
} elseif($paper->event_type == 2) {?>
09:05 - 09:25 | Twitter Volume, Current Spending, and Weekday Norms Predict Consumer Spending Three Days in Advance Justin Stewart, Homer Strong and Mark Bedau |
} elseif($paper->event_type == 3) {?>
09:05 - 09:25 | Twitter Volume, Current Spending, and Weekday Norms Predict Consumer Spending Three Days in Advance | } elseif($paper->event_type == 4) {?>Twitter Volume, Current Spending, and Weekday Norms Predict Consumer Spending Three Days in Advance | } elseif($paper->event_type == 5) {?>09:05 - 09:25 | Twitter Volume, Current Spending, and Weekday Norms Predict Consumer Spending Three Days in Advance Justin Stewart, Homer Strong and Mark Bedau |
} ?>
|
09:25 - 09:45 | Geosocial Graph Based Community Detection Yves van Gennip, Huiyi Hu, Blake Hunter, Mason A. Porter |
} elseif($paper->event_type == 2) {?>
09:25 - 09:45 | Geosocial Graph Based Community Detection Yves van Gennip, Huiyi Hu, Blake Hunter, Mason A. Porter |
} elseif($paper->event_type == 3) {?>
09:25 - 09:45 | Geosocial Graph Based Community Detection | } elseif($paper->event_type == 4) {?>Geosocial Graph Based Community Detection | } elseif($paper->event_type == 5) {?>09:25 - 09:45 | Geosocial Graph Based Community Detection Yves van Gennip, Huiyi Hu, Blake Hunter, Mason A. Porter |
} ?>
|
09:45 - 10:15 | Invited Industry Talk Misia Tramp |
} elseif($paper->event_type == 2) {?>
09:45 - 10:15 | Invited Industry Talk Misia Tramp |
} elseif($paper->event_type == 3) {?>
09:45 - 10:15 | Invited Industry Talk | } elseif($paper->event_type == 4) {?>Invited Industry Talk | } elseif($paper->event_type == 5) {?>09:45 - 10:15 | Invited Industry Talk Misia Tramp |
} ?>
|
10:15 - 10:45 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:15 - 10:45 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:15 - 10:45 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:15 - 10:45 | Coffee Break |
} ?>
|
10:45 - 12:30 | WEMA Workshop WEMA |
} elseif($paper->event_type == 2) {?>
10:45 - 12:30 | WEMA Workshop WEMA |
} elseif($paper->event_type == 3) {?>
10:45 - 12:30 | WEMA Workshop | } elseif($paper->event_type == 4) {?>WEMA Workshop | } elseif($paper->event_type == 5) {?>10:45 - 12:30 | WEMA Workshop WEMA |
} ?>
Organized by Shashi Shekar, Peggy Agouris, Ranga Raju Vatsavai, Bart Kuijpers, Nanni Mirco, Donato Malerba and Anthony Stefanidis
09:00 - 17:30
Room: Holbein
http://www.ornl.gov/sci/knowledgediscovery/sstdm-12
This workshop features three invited talks and ten peer-reviewed technical presentations covering latest advances in spatial and spatiotemporal data mining. We cordially invite all data miners to this exciting workshop.
09:00 - 09:10 | Welcome and Introduction Bart Kuijpers |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcome and Introduction Bart Kuijpers |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcome and Introduction | } elseif($paper->event_type == 4) {?>Welcome and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcome and Introduction Bart Kuijpers |
} ?>
|
09:10 - 10:00 | Keynote Talk |
} elseif($paper->event_type == 2) {?>
09:10 - 10:00 | Keynote Talk |
} elseif($paper->event_type == 3) {?>
09:10 - 10:00 | Keynote Talk | } elseif($paper->event_type == 4) {?>Keynote Talk | } elseif($paper->event_type == 5) {?>09:10 - 10:00 | Keynote Talk |
} ?>
|
10:00 - 10:25 | Toward Geographic Information Harvesting: Extraction of Spatial Relational Facts from Web Documents Corrado Loglisci, Dino Ienco, Mathieu Roche, Maguelonne Teisseire, and Donato Malerba |
} elseif($paper->event_type == 2) {?>
10:00 - 10:25 | Toward Geographic Information Harvesting: Extraction of Spatial Relational Facts from Web Documents Corrado Loglisci, Dino Ienco, Mathieu Roche, Maguelonne Teisseire, and Donato Malerba |
} elseif($paper->event_type == 3) {?>
10:00 - 10:25 | Toward Geographic Information Harvesting: Extraction of Spatial Relational Facts from Web Documents | } elseif($paper->event_type == 4) {?>Toward Geographic Information Harvesting: Extraction of Spatial Relational Facts from Web Documents | } elseif($paper->event_type == 5) {?>10:00 - 10:25 | Toward Geographic Information Harvesting: Extraction of Spatial Relational Facts from Web Documents Corrado Loglisci, Dino Ienco, Mathieu Roche, Maguelonne Teisseire, and Donato Malerba |
} ?>
|
10:30 - 11:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:30 - 11:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:30 - 11:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:30 - 11:00 | Coffee Break |
} ?>
|
11:00 - 11:25 | Hierarchical Classifier-Regression Ensemble for Multi-Phase Non-Linear Dynamic System Response Prediction: Application to Climate Analysis Doel Gonzalez, Zhengzhang Chen, Isaac Tetteh, Tatdow Pansombut, Fredrick Semazzi, Vipin Kumar, Anatoli Melechko, and Nagiza Samatova |
} elseif($paper->event_type == 2) {?>
11:00 - 11:25 | Hierarchical Classifier-Regression Ensemble for Multi-Phase Non-Linear Dynamic System Response Prediction: Application to Climate Analysis Doel Gonzalez, Zhengzhang Chen, Isaac Tetteh, Tatdow Pansombut, Fredrick Semazzi, Vipin Kumar, Anatoli Melechko, and Nagiza Samatova |
} elseif($paper->event_type == 3) {?>
11:00 - 11:25 | Hierarchical Classifier-Regression Ensemble for Multi-Phase Non-Linear Dynamic System Response Prediction: Application to Climate Analysis | } elseif($paper->event_type == 4) {?>Hierarchical Classifier-Regression Ensemble for Multi-Phase Non-Linear Dynamic System Response Prediction: Application to Climate Analysis | } elseif($paper->event_type == 5) {?>11:00 - 11:25 | Hierarchical Classifier-Regression Ensemble for Multi-Phase Non-Linear Dynamic System Response Prediction: Application to Climate Analysis Doel Gonzalez, Zhengzhang Chen, Isaac Tetteh, Tatdow Pansombut, Fredrick Semazzi, Vipin Kumar, Anatoli Melechko, and Nagiza Samatova |
} ?>
|
11:25 - 11:50 | Approximate Search on Massive Spatiotemporal Datasets Ivan Brugere, Karsten Steinhaeuser, Shyam Boriah, and Vipin Kumar |
} elseif($paper->event_type == 2) {?>
11:25 - 11:50 | Approximate Search on Massive Spatiotemporal Datasets Ivan Brugere, Karsten Steinhaeuser, Shyam Boriah, and Vipin Kumar |
} elseif($paper->event_type == 3) {?>
11:25 - 11:50 | Approximate Search on Massive Spatiotemporal Datasets | } elseif($paper->event_type == 4) {?>Approximate Search on Massive Spatiotemporal Datasets | } elseif($paper->event_type == 5) {?>11:25 - 11:50 | Approximate Search on Massive Spatiotemporal Datasets Ivan Brugere, Karsten Steinhaeuser, Shyam Boriah, and Vipin Kumar |
} ?>
|
12:00 - 13:30 | Lunch Break Break |
} elseif($paper->event_type == 2) {?>
12:00 - 13:30 | Lunch Break Break |
} elseif($paper->event_type == 3) {?>
12:00 - 13:30 | Lunch Break Break | } elseif($paper->event_type == 4) {?>Lunch Break Break | } elseif($paper->event_type == 5) {?>12:00 - 13:30 | Lunch Break Break |
} ?>
|
13:30 - 14:00 | Invited Talk |
} elseif($paper->event_type == 2) {?>
13:30 - 14:00 | Invited Talk |
} elseif($paper->event_type == 3) {?>
13:30 - 14:00 | Invited Talk | } elseif($paper->event_type == 4) {?>Invited Talk | } elseif($paper->event_type == 5) {?>13:30 - 14:00 | Invited Talk |
} ?>
|
14:00 - 14:25 | Geo-referenced Time-series Summarization Using k-Full Trees: A Summary of Results Dev Oliver, Shashi Shekhar, James Kang, Renee Bousselaire, Veronica Carlan, and Michael Evans |
} elseif($paper->event_type == 2) {?>
14:00 - 14:25 | Geo-referenced Time-series Summarization Using k-Full Trees: A Summary of Results Dev Oliver, Shashi Shekhar, James Kang, Renee Bousselaire, Veronica Carlan, and Michael Evans |
} elseif($paper->event_type == 3) {?>
14:00 - 14:25 | Geo-referenced Time-series Summarization Using k-Full Trees: A Summary of Results | } elseif($paper->event_type == 4) {?>Geo-referenced Time-series Summarization Using k-Full Trees: A Summary of Results | } elseif($paper->event_type == 5) {?>14:00 - 14:25 | Geo-referenced Time-series Summarization Using k-Full Trees: A Summary of Results Dev Oliver, Shashi Shekhar, James Kang, Renee Bousselaire, Veronica Carlan, and Michael Evans |
} ?>
|
14:25 - 14:50 | Mining Spatio-temporal Patterns in the Presence of Concept Hierarchies Le Van Quoc Anh and Michael Gertz |
} elseif($paper->event_type == 2) {?>
14:25 - 14:50 | Mining Spatio-temporal Patterns in the Presence of Concept Hierarchies Le Van Quoc Anh and Michael Gertz |
} elseif($paper->event_type == 3) {?>
14:25 - 14:50 | Mining Spatio-temporal Patterns in the Presence of Concept Hierarchies | } elseif($paper->event_type == 4) {?>Mining Spatio-temporal Patterns in the Presence of Concept Hierarchies | } elseif($paper->event_type == 5) {?>14:25 - 14:50 | Mining Spatio-temporal Patterns in the Presence of Concept Hierarchies Le Van Quoc Anh and Michael Gertz |
} ?>
|
14:50 - 15:15 | Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions JKarthik Ganesan Pillai, Rafal Angryk, and Juan Banda |
} elseif($paper->event_type == 2) {?>
14:50 - 15:15 | Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions JKarthik Ganesan Pillai, Rafal Angryk, and Juan Banda |
} elseif($paper->event_type == 3) {?>
14:50 - 15:15 | Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions | } elseif($paper->event_type == 4) {?>Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions | } elseif($paper->event_type == 5) {?>14:50 - 15:15 | Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions JKarthik Ganesan Pillai, Rafal Angryk, and Juan Banda |
} ?>
|
15:15 - 15:30 | Spatial Interestingness Measures for Co-location Pattern Miningt Christian Sengstock, Michael Gertz, and Canh Tran Van |
} elseif($paper->event_type == 2) {?>
15:15 - 15:30 | Spatial Interestingness Measures for Co-location Pattern Miningt Christian Sengstock, Michael Gertz, and Canh Tran Van |
} elseif($paper->event_type == 3) {?>
15:15 - 15:30 | Spatial Interestingness Measures for Co-location Pattern Miningt | } elseif($paper->event_type == 4) {?>Spatial Interestingness Measures for Co-location Pattern Miningt | } elseif($paper->event_type == 5) {?>15:15 - 15:30 | Spatial Interestingness Measures for Co-location Pattern Miningt Christian Sengstock, Michael Gertz, and Canh Tran Van |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 16:30 | Invited Talk |
} elseif($paper->event_type == 2) {?>
16:00 - 16:30 | Invited Talk |
} elseif($paper->event_type == 3) {?>
16:00 - 16:30 | Invited Talk | } elseif($paper->event_type == 4) {?>Invited Talk | } elseif($paper->event_type == 5) {?>16:00 - 16:30 | Invited Talk |
} ?>
|
16:30 - 16:45 | Performance-Optimizing Classification of Time-series based on Nearest Neighbor Density Approximation Shin Ando |
} elseif($paper->event_type == 2) {?>
16:30 - 16:45 | Performance-Optimizing Classification of Time-series based on Nearest Neighbor Density Approximation Shin Ando |
} elseif($paper->event_type == 3) {?>
16:30 - 16:45 | Performance-Optimizing Classification of Time-series based on Nearest Neighbor Density Approximation | } elseif($paper->event_type == 4) {?>Performance-Optimizing Classification of Time-series based on Nearest Neighbor Density Approximation | } elseif($paper->event_type == 5) {?>16:30 - 16:45 | Performance-Optimizing Classification of Time-series based on Nearest Neighbor Density Approximation Shin Ando |
} ?>
|
16:45 - 17:00 | Comparative Study of Association Rule Mining and MiSTIC in Extracting Spatio-Temporal Disease Occurrences Patterns Vipul Raheja and Krishnan Rajan |
} elseif($paper->event_type == 2) {?>
16:45 - 17:00 | Comparative Study of Association Rule Mining and MiSTIC in Extracting Spatio-Temporal Disease Occurrences Patterns Vipul Raheja and Krishnan Rajan |
} elseif($paper->event_type == 3) {?>
16:45 - 17:00 | Comparative Study of Association Rule Mining and MiSTIC in Extracting Spatio-Temporal Disease Occurrences Patterns | } elseif($paper->event_type == 4) {?>Comparative Study of Association Rule Mining and MiSTIC in Extracting Spatio-Temporal Disease Occurrences Patterns | } elseif($paper->event_type == 5) {?>16:45 - 17:00 | Comparative Study of Association Rule Mining and MiSTIC in Extracting Spatio-Temporal Disease Occurrences Patterns Vipul Raheja and Krishnan Rajan |
} ?>
|
17:00 - 17:15 | Location Extraction from Social Networks with Commodity Software and Online Data Dimitrios Gunopulos |
} elseif($paper->event_type == 2) {?>
17:00 - 17:15 | Location Extraction from Social Networks with Commodity Software and Online Data Dimitrios Gunopulos |
} elseif($paper->event_type == 3) {?>
17:00 - 17:15 | Location Extraction from Social Networks with Commodity Software and Online Data | } elseif($paper->event_type == 4) {?>Location Extraction from Social Networks with Commodity Software and Online Data | } elseif($paper->event_type == 5) {?>17:00 - 17:15 | Location Extraction from Social Networks with Commodity Software and Online Data Dimitrios Gunopulos |
} ?>
|
17:15 - 17:30 | Closing Remarks |
} elseif($paper->event_type == 2) {?>
17:15 - 17:30 | Closing Remarks |
} elseif($paper->event_type == 3) {?>
17:15 - 17:30 | Closing Remarks | } elseif($paper->event_type == 4) {?>Closing Remarks | } elseif($paper->event_type == 5) {?>17:15 - 17:30 | Closing Remarks |
} ?>
Organized by Jun Yan, Bin Gao, Dou Shen, and Zheng Chen
10:45 - 12:30
Room: Alto & Mezzo
http://research.microsoft.com/en-us/um/beijing/events/wema-2012
Web entities have been recognized as one of the key things, which can take real semantics to our current keyword based Web. Entity related research such as entity extraction, entity recognition, entity relation modeling, and entity disambiguation is highly desired by recent advances in various Web applications such as Web search, online advertising, and social networks. As some application examples, without entities being correctly recognized and disambiguated in search queries, the users' search intents are hard to be well understood by search engines. The relation model of people, which is a special kind of entity, is the foundation of social networks mining. The intelligent online services such as “best guess” in Google and “Siri” of Apple highly depend on whether the entities and corresponding concepts in user questions are well recognized and classified. Thus, entity modeling has been an attractive inter-disciplinary research field, interplaying with information extraction, Web mining, machine learning, Natural Language Processing, information retrieval, computational advertising, social network, etc. Taking entity as the theme, this workshop is to bring together leading researchers in related areas to promote this important but underexplored research direction, establish the technical foundation, and assess the state of the art.
10:45 - 10:50 | Welcoming and Introduction Jun Yan |
} elseif($paper->event_type == 2) {?>
10:45 - 10:50 | Welcoming and Introduction Jun Yan |
} elseif($paper->event_type == 3) {?>
10:45 - 10:50 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>10:45 - 10:50 | Welcoming and Introduction Jun Yan |
} ?>
|
10:50 - 11:30 | Keynote Talk: Semantic Data Mining: Leveraging Entity Modeling for Knowledge Discovery Ruoming Jin |
} elseif($paper->event_type == 2) {?>
10:50 - 11:30 | Keynote Talk: Semantic Data Mining: Leveraging Entity Modeling for Knowledge Discovery Ruoming Jin |
} elseif($paper->event_type == 3) {?>
10:50 - 11:30 | Keynote Talk: Semantic Data Mining: Leveraging Entity Modeling for Knowledge Discovery | } elseif($paper->event_type == 4) {?>Keynote Talk: Semantic Data Mining: Leveraging Entity Modeling for Knowledge Discovery | } elseif($paper->event_type == 5) {?>10:50 - 11:30 | Keynote Talk: Semantic Data Mining: Leveraging Entity Modeling for Knowledge Discovery Ruoming Jin |
} ?>
|
11:30 - 11:50 | Constructing and Exploring Composite Items Using Max-valid Bundles Gowtham Srinivas, Sreyantha Chary, Satheesh Kumar D, and Santhi Thilagam |
} elseif($paper->event_type == 2) {?>
11:30 - 11:50 | Constructing and Exploring Composite Items Using Max-valid Bundles Gowtham Srinivas, Sreyantha Chary, Satheesh Kumar D, and Santhi Thilagam |
} elseif($paper->event_type == 3) {?>
11:30 - 11:50 | Constructing and Exploring Composite Items Using Max-valid Bundles | } elseif($paper->event_type == 4) {?>Constructing and Exploring Composite Items Using Max-valid Bundles | } elseif($paper->event_type == 5) {?>11:30 - 11:50 | Constructing and Exploring Composite Items Using Max-valid Bundles Gowtham Srinivas, Sreyantha Chary, Satheesh Kumar D, and Santhi Thilagam |
} ?>
|
11:50 - 12:10 | Learning to Extract Entity Uniqueness from Web for Helping User Decision Making Wenhan Wang, Ning Liu, and Yiran Xie |
} elseif($paper->event_type == 2) {?>
11:50 - 12:10 | Learning to Extract Entity Uniqueness from Web for Helping User Decision Making Wenhan Wang, Ning Liu, and Yiran Xie |
} elseif($paper->event_type == 3) {?>
11:50 - 12:10 | Learning to Extract Entity Uniqueness from Web for Helping User Decision Making | } elseif($paper->event_type == 4) {?>Learning to Extract Entity Uniqueness from Web for Helping User Decision Making | } elseif($paper->event_type == 5) {?>11:50 - 12:10 | Learning to Extract Entity Uniqueness from Web for Helping User Decision Making Wenhan Wang, Ning Liu, and Yiran Xie |
} ?>
|
12:10 - 12:30 | Endless and Scalable Knowledge Table Extraction from Semi-structured Websites Yingqin Gu, Lei JI, Ziheng Jiang, and Jun He |
} elseif($paper->event_type == 2) {?>
12:10 - 12:30 | Endless and Scalable Knowledge Table Extraction from Semi-structured Websites Yingqin Gu, Lei JI, Ziheng Jiang, and Jun He |
} elseif($paper->event_type == 3) {?>
12:10 - 12:30 | Endless and Scalable Knowledge Table Extraction from Semi-structured Websites | } elseif($paper->event_type == 4) {?>Endless and Scalable Knowledge Table Extraction from Semi-structured Websites | } elseif($paper->event_type == 5) {?>12:10 - 12:30 | Endless and Scalable Knowledge Table Extraction from Semi-structured Websites Yingqin Gu, Lei JI, Ziheng Jiang, and Jun He |
} ?>
Organized by David Martens and Bart Goethals
09:00-17:30
Room: Salle des Nation II
http://icdm2012.ua.ac.be/industry-government
The Industry and Government Track of the IEEE ICDM conference will bring together academics and practitioners to discuss data mining challenges and opportunities that are emerging in both industry and government. This year we see a strong interest on Big Data. Seen that data mining has been considered as one of the top technological trends for companies, we hope that the track will further demonstrate the potential of data mining for both industry and government, and spur collaborations between academics and practitioners in this area.
09:00 - 09:30 | Keynote Talk: Human vs. Machine: How Watson beat the all-time best Jeopardy champions James Fan (IBM) |
} elseif($paper->event_type == 2) {?>
09:00 - 09:30 | Keynote Talk: Human vs. Machine: How Watson beat the all-time best Jeopardy champions James Fan (IBM) |
} elseif($paper->event_type == 3) {?>
09:00 - 09:30 | Keynote Talk: Human vs. Machine: How Watson beat the all-time best Jeopardy champions | } elseif($paper->event_type == 4) {?>Keynote Talk: Human vs. Machine: How Watson beat the all-time best Jeopardy champions | } elseif($paper->event_type == 5) {?>09:00 - 09:30 | Keynote Talk: Human vs. Machine: How Watson beat the all-time best Jeopardy champions James Fan (IBM) |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 11:00 | Data mining lessons from half a century of credit scoring Tony Van Gestel (Dexia) |
} elseif($paper->event_type == 2) {?>
10:30 - 11:00 | Data mining lessons from half a century of credit scoring Tony Van Gestel (Dexia) |
} elseif($paper->event_type == 3) {?>
10:30 - 11:00 | Data mining lessons from half a century of credit scoring | } elseif($paper->event_type == 4) {?>Data mining lessons from half a century of credit scoring | } elseif($paper->event_type == 5) {?>10:30 - 11:00 | Data mining lessons from half a century of credit scoring Tony Van Gestel (Dexia) |
} ?>
|
11:00 - 11:30 | Tectonic Shifts in Television Advertising Brendan Kitts (PrecisionDemand) |
} elseif($paper->event_type == 2) {?>
11:00 - 11:30 | Tectonic Shifts in Television Advertising Brendan Kitts (PrecisionDemand) |
} elseif($paper->event_type == 3) {?>
11:00 - 11:30 | Tectonic Shifts in Television Advertising | } elseif($paper->event_type == 4) {?>Tectonic Shifts in Television Advertising | } elseif($paper->event_type == 5) {?>11:00 - 11:30 | Tectonic Shifts in Television Advertising Brendan Kitts (PrecisionDemand) |
} ?>
|
11:30 - 12:00 | Data mining for official statistics Bart Buelens (Statistics Netherlands) |
} elseif($paper->event_type == 2) {?>
11:30 - 12:00 | Data mining for official statistics Bart Buelens (Statistics Netherlands) |
} elseif($paper->event_type == 3) {?>
11:30 - 12:00 | Data mining for official statistics | } elseif($paper->event_type == 4) {?>Data mining for official statistics | } elseif($paper->event_type == 5) {?>11:30 - 12:00 | Data mining for official statistics Bart Buelens (Statistics Netherlands) |
} ?>
|
12:00 - 13:30 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:00 - 13:30 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:00 - 13:30 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:00 - 13:30 | Lunch Break |
} ?>
|
13:30 - 14:30 | Keynote Talk: Mining (Massive) Consumer Behavior Data for Marketing Foster Provost (New York University) |
} elseif($paper->event_type == 2) {?>
13:30 - 14:30 | Keynote Talk: Mining (Massive) Consumer Behavior Data for Marketing Foster Provost (New York University) |
} elseif($paper->event_type == 3) {?>
13:30 - 14:30 | Keynote Talk: Mining (Massive) Consumer Behavior Data for Marketing | } elseif($paper->event_type == 4) {?>Keynote Talk: Mining (Massive) Consumer Behavior Data for Marketing | } elseif($paper->event_type == 5) {?>13:30 - 14:30 | Keynote Talk: Mining (Massive) Consumer Behavior Data for Marketing Foster Provost (New York University) |
} ?>
|
14:30 - 15:00 | Data Mining Framework For Monitoring Nuclear Facilities Ranga Raju Vatsavai (Oak Ridge National Laboratory, US) |
} elseif($paper->event_type == 2) {?>
14:30 - 15:00 | Data Mining Framework For Monitoring Nuclear Facilities Ranga Raju Vatsavai (Oak Ridge National Laboratory, US) |
} elseif($paper->event_type == 3) {?>
14:30 - 15:00 | Data Mining Framework For Monitoring Nuclear Facilities | } elseif($paper->event_type == 4) {?>Data Mining Framework For Monitoring Nuclear Facilities | } elseif($paper->event_type == 5) {?>14:30 - 15:00 | Data Mining Framework For Monitoring Nuclear Facilities Ranga Raju Vatsavai (Oak Ridge National Laboratory, US) |
} ?>
|
15:00 - 15:30 | Distributed Big Advertiser Data Mining Ashish Bindra (nPario) |
} elseif($paper->event_type == 2) {?>
15:00 - 15:30 | Distributed Big Advertiser Data Mining Ashish Bindra (nPario) |
} elseif($paper->event_type == 3) {?>
15:00 - 15:30 | Distributed Big Advertiser Data Mining | } elseif($paper->event_type == 4) {?>Distributed Big Advertiser Data Mining | } elseif($paper->event_type == 5) {?>15:00 - 15:30 | Distributed Big Advertiser Data Mining Ashish Bindra (nPario) |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 17:00 | Keynote Talk: Increased efficiency of fraud inspection through Data Mining John Crombez (Belgian State Secretary for the Fight against Social and Tax Fraud) |
} elseif($paper->event_type == 2) {?>
16:00 - 17:00 | Keynote Talk: Increased efficiency of fraud inspection through Data Mining John Crombez (Belgian State Secretary for the Fight against Social and Tax Fraud) |
} elseif($paper->event_type == 3) {?>
16:00 - 17:00 | Keynote Talk: Increased efficiency of fraud inspection through Data Mining | } elseif($paper->event_type == 4) {?>Keynote Talk: Increased efficiency of fraud inspection through Data Mining | } elseif($paper->event_type == 5) {?>16:00 - 17:00 | Keynote Talk: Increased efficiency of fraud inspection through Data Mining John Crombez (Belgian State Secretary for the Fight against Social and Tax Fraud) |
} ?>
|
17:00 - 17:30 | Automation of prediction of rare events in big data: is it possible (today)? Thierry Van de Merckt (BISide, Solvay Business School) |
} elseif($paper->event_type == 2) {?>
17:00 - 17:30 | Automation of prediction of rare events in big data: is it possible (today)? Thierry Van de Merckt (BISide, Solvay Business School) |
} elseif($paper->event_type == 3) {?>
17:00 - 17:30 | Automation of prediction of rare events in big data: is it possible (today)? | } elseif($paper->event_type == 4) {?>Automation of prediction of rare events in big data: is it possible (today)? | } elseif($paper->event_type == 5) {?>17:00 - 17:30 | Automation of prediction of rare events in big data: is it possible (today)? Thierry Van de Merckt (BISide, Solvay Business School) |
} ?>
|
17:30 – 18:00 | Big Data and Fraud detection in government and banking, Lessons learned so far. Jerome Bryssinck (SAS Institute) |
} elseif($paper->event_type == 2) {?>
17:30 – 18:00 | Big Data and Fraud detection in government and banking, Lessons learned so far. Jerome Bryssinck (SAS Institute) |
} elseif($paper->event_type == 3) {?>
17:30 – 18:00 | Big Data and Fraud detection in government and banking, Lessons learned so far. | } elseif($paper->event_type == 4) {?>Big Data and Fraud detection in government and banking, Lessons learned so far. | } elseif($paper->event_type == 5) {?>17:30 – 18:00 | Big Data and Fraud detection in government and banking, Lessons learned so far. Jerome Bryssinck (SAS Institute) |
} ?>
Organized by Stéphane Canu, Gérard Govaert and Mohamed Nadif
14:00-18:00
Room: Tintoretto I
https://sites.google.com/site/workshopcoclustering
Co-clustering is an important tool in a variety of scientific areas including document clustering, bioinformatics and information retrieval. Compared with the classical clustering algorithms, co-clustering algorithms have been shown to be more effective in discovering certain hidden clustering structures in data. This workshop intends to provide a forum for researchers in the field of Machine Learning, Statistics, Bioinformatics and Data Mining to discuss the above and other related topics regarding co-clustering and their applications.
14:00 – 14:15 | Welcoming and Introduction Mohamed Nadif |
} elseif($paper->event_type == 2) {?>
14:00 – 14:15 | Welcoming and Introduction Mohamed Nadif |
} elseif($paper->event_type == 3) {?>
14:00 – 14:15 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>14:00 – 14:15 | Welcoming and Introduction Mohamed Nadif |
} ?>
|
14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner Asta Laiho, Andras Kiraly, Janos Abonyi and Attila Gyenesei |
} elseif($paper->event_type == 2) {?>
14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner Asta Laiho, Andras Kiraly, Janos Abonyi and Attila Gyenesei |
} elseif($paper->event_type == 3) {?>
14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner | } elseif($paper->event_type == 4) {?>Biclustering of high-throughput gene expression data with BiclusterMiner | } elseif($paper->event_type == 5) {?>14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner Asta Laiho, Andras Kiraly, Janos Abonyi and Attila Gyenesei |
} ?>
|
14:45-15:15 | Mining Local Staircase Patterns in Noisy Data Thanh Le Van, Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt and Kathleen Marchal |
} elseif($paper->event_type == 2) {?>
14:45-15:15 | Mining Local Staircase Patterns in Noisy Data Thanh Le Van, Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt and Kathleen Marchal |
} elseif($paper->event_type == 3) {?>
14:45-15:15 | Mining Local Staircase Patterns in Noisy Data | } elseif($paper->event_type == 4) {?>Mining Local Staircase Patterns in Noisy Data | } elseif($paper->event_type == 5) {?>14:45-15:15 | Mining Local Staircase Patterns in Noisy Data Thanh Le Van, Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt and Kathleen Marchal |
} ?>
|
15:30-16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30-16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30-16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30-16:00 | Coffee Break |
} ?>
|
16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks Farnoush Farhadi, Elham Hoseini, Sattar Hashemi and Ali Hamzeh |
} elseif($paper->event_type == 2) {?>
16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks Farnoush Farhadi, Elham Hoseini, Sattar Hashemi and Ali Hamzeh |
} elseif($paper->event_type == 3) {?>
16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks | } elseif($paper->event_type == 4) {?>TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks | } elseif($paper->event_type == 5) {?>16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks Farnoush Farhadi, Elham Hoseini, Sattar Hashemi and Ali Hamzeh |
} ?>
|
16:30-17:00 | Concept-based Biclustering for Internet Advertisement Dmitry Ignatov, Sergei Kuznetsov and Jonas Poelmans |
} elseif($paper->event_type == 2) {?>
16:30-17:00 | Concept-based Biclustering for Internet Advertisement Dmitry Ignatov, Sergei Kuznetsov and Jonas Poelmans |
} elseif($paper->event_type == 3) {?>
16:30-17:00 | Concept-based Biclustering for Internet Advertisement | } elseif($paper->event_type == 4) {?>Concept-based Biclustering for Internet Advertisement | } elseif($paper->event_type == 5) {?>16:30-17:00 | Concept-based Biclustering for Internet Advertisement Dmitry Ignatov, Sergei Kuznetsov and Jonas Poelmans |
} ?>
|
17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model Aurore Lomet, Gérard Govaert, and Yves Grandvalet |
} elseif($paper->event_type == 2) {?>
17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model Aurore Lomet, Gérard Govaert, and Yves Grandvalet |
} elseif($paper->event_type == 3) {?>
17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model | } elseif($paper->event_type == 4) {?>An approximation of the integrated classification likelihood for the latent block model | } elseif($paper->event_type == 5) {?>17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model Aurore Lomet, Gérard Govaert, and Yves Grandvalet |
} ?>
|
17:30-18:00 | A Triclustering Approach for Time Evolving Graphs Romain Guigours, Marc Boullé and Fabrice Rossi |
} elseif($paper->event_type == 2) {?>
17:30-18:00 | A Triclustering Approach for Time Evolving Graphs Romain Guigours, Marc Boullé and Fabrice Rossi |
} elseif($paper->event_type == 3) {?>
17:30-18:00 | A Triclustering Approach for Time Evolving Graphs | } elseif($paper->event_type == 4) {?>A Triclustering Approach for Time Evolving Graphs | } elseif($paper->event_type == 5) {?>17:30-18:00 | A Triclustering Approach for Time Evolving Graphs Romain Guigours, Marc Boullé and Fabrice Rossi |
} ?>