Organized by Yann-Aël Le Borgne and Evimaria Terzi
09:00 - 18:00
Room: Salle des Nation II
http://icdm2012.ua.ac.be/content/phd-forum
The aim of the Forum is to provide an international environment in which students can meet and exchange their ideas and experiences both with peers and with senior researchers from the Data Mining Community. The Forum is particularly aimed at PhD students in the early stages of their career and Master's students planning to pursue their research in a PhD programme. The session will be chaired by Yann-Aël Le Borgne and Patrick Meyer.
09:00 - 09:10 | Welcome and Introduction Yann-Aël Le Borgne |
} elseif($paper->event_type == 2) {?>
09:00 - 09:10 | Welcome and Introduction Yann-Aël Le Borgne |
} elseif($paper->event_type == 3) {?>
09:00 - 09:10 | Welcome and Introduction | } elseif($paper->event_type == 4) {?>Welcome and Introduction | } elseif($paper->event_type == 5) {?>09:00 - 09:10 | Welcome and Introduction Yann-Aël Le Borgne |
} ?>
|
09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks Francesco Bonchi |
} elseif($paper->event_type == 2) {?>
09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks Francesco Bonchi |
} elseif($paper->event_type == 3) {?>
09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks | } elseif($paper->event_type == 4) {?>Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks | } elseif($paper->event_type == 5) {?>09:10 - 10:00 | Invited Talk: Several diverse mining problems (and publications) with the same input data: an example with propagation data in social networks Francesco Bonchi |
} ?>
|
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 2) {?>
10:00 - 10:30 | Coffee Break |
} elseif($paper->event_type == 3) {?>
10:00 - 10:30 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>10:00 - 10:30 | Coffee Break |
} ?>
|
10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media Victor C. Liang and Vincent T.Y. Ng |
} elseif($paper->event_type == 2) {?>
10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media Victor C. Liang and Vincent T.Y. Ng |
} elseif($paper->event_type == 3) {?>
10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media | } elseif($paper->event_type == 4) {?>Modeling of Collective Synchronous Behavior on Social Media | } elseif($paper->event_type == 5) {?>10:30 - 10:50 | Modeling of Collective Synchronous Behavior on Social Media Victor C. Liang and Vincent T.Y. Ng |
} ?>
|
10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning Gert Loterman and Christophe Mues |
} elseif($paper->event_type == 2) {?>
10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning Gert Loterman and Christophe Mues |
} elseif($paper->event_type == 3) {?>
10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning | } elseif($paper->event_type == 4) {?>Selecting accurate and comprehensible regression algorithms through meta learning | } elseif($paper->event_type == 5) {?>10:50 - 11:10 | Selecting accurate and comprehensible regression algorithms through meta learning Gert Loterman and Christophe Mues |
} ?>
|
11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation Huiyi Hu, Yves van Gennip, Blake Hunter, Andrea L. Bertozzi and Mason A. Porter |
} elseif($paper->event_type == 2) {?>
11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation Huiyi Hu, Yves van Gennip, Blake Hunter, Andrea L. Bertozzi and Mason A. Porter |
} elseif($paper->event_type == 3) {?>
11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation | } elseif($paper->event_type == 4) {?>Multi-slice Modularity Optimization in Community Detection and Image segmentation | } elseif($paper->event_type == 5) {?>11:10 - 11:30 | Multi-slice Modularity Optimization in Community Detection and Image segmentation Huiyi Hu, Yves van Gennip, Blake Hunter, Andrea L. Bertozzi and Mason A. Porter |
} ?>
|
11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking Alexandros Karakasidis and Vassilios S. Verykios |
} elseif($paper->event_type == 2) {?>
11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking Alexandros Karakasidis and Vassilios S. Verykios |
} elseif($paper->event_type == 3) {?>
11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking | } elseif($paper->event_type == 4) {?>Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking | } elseif($paper->event_type == 5) {?>11:30 - 11:50 | Sorted Neighborhoods for Multidimensional Privacy-Preserving Blocking Alexandros Karakasidis and Vassilios S. Verykios |
} ?>
|
11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach Tanmay Basu and C. A. Murthy |
} elseif($paper->event_type == 2) {?>
11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach Tanmay Basu and C. A. Murthy |
} elseif($paper->event_type == 3) {?>
11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach | } elseif($paper->event_type == 4) {?>Effective Text Classification by a Supervised Feature Selection Approach | } elseif($paper->event_type == 5) {?>11:50 - 12:10 | Effective Text Classification by a Supervised Feature Selection Approach Tanmay Basu and C. A. Murthy |
} ?>
|
12:10 - 12:30 | Active Learning based Rule Extraction for Regression Enric Junqué de Fortuny and David Martens |
} elseif($paper->event_type == 2) {?>
12:10 - 12:30 | Active Learning based Rule Extraction for Regression Enric Junqué de Fortuny and David Martens |
} elseif($paper->event_type == 3) {?>
12:10 - 12:30 | Active Learning based Rule Extraction for Regression | } elseif($paper->event_type == 4) {?>Active Learning based Rule Extraction for Regression | } elseif($paper->event_type == 5) {?>12:10 - 12:30 | Active Learning based Rule Extraction for Regression Enric Junqué de Fortuny and David Martens |
} ?>
|
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 2) {?>
12:30 - 14:00 | Lunch Break |
} elseif($paper->event_type == 3) {?>
12:30 - 14:00 | Lunch Break | } elseif($paper->event_type == 4) {?>Lunch Break | } elseif($paper->event_type == 5) {?>12:30 - 14:00 | Lunch Break |
} ?>
|
14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation Francois-Xavier Willems |
} elseif($paper->event_type == 2) {?>
14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation Francois-Xavier Willems |
} elseif($paper->event_type == 3) {?>
14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation | } elseif($paper->event_type == 4) {?>Invited Talk: How to Make an Effective Presentation | } elseif($paper->event_type == 5) {?>14:00 - 14:50 | Invited Talk: How to Make an Effective Presentation Francois-Xavier Willems |
} ?>
|
14:50 - 15:10 | Imputation of HLA genes from SNP data Vanja Paunić, Michael Steinbach, Vipin Kumar and Martin Maiers |
} elseif($paper->event_type == 2) {?>
14:50 - 15:10 | Imputation of HLA genes from SNP data Vanja Paunić, Michael Steinbach, Vipin Kumar and Martin Maiers |
} elseif($paper->event_type == 3) {?>
14:50 - 15:10 | Imputation of HLA genes from SNP data | } elseif($paper->event_type == 4) {?>Imputation of HLA genes from SNP data | } elseif($paper->event_type == 5) {?>14:50 - 15:10 | Imputation of HLA genes from SNP data Vanja Paunić, Michael Steinbach, Vipin Kumar and Martin Maiers |
} ?>
|
15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner Bart Minnaert and David Martens |
} elseif($paper->event_type == 2) {?>
15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner Bart Minnaert and David Martens |
} elseif($paper->event_type == 3) {?>
15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner | } elseif($paper->event_type == 4) {?>Towards a Particle Swarm Optimization-Based Regression Rule Miner | } elseif($paper->event_type == 5) {?>15:10 - 15:30 | Towards a Particle Swarm Optimization-Based Regression Rule Miner Bart Minnaert and David Martens |
} ?>
|
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30 - 16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30 - 16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30 - 16:00 | Coffee Break |
} ?>
|
16:00 - 17:00 | Poster session |
} elseif($paper->event_type == 2) {?>
16:00 - 17:00 | Poster session |
} elseif($paper->event_type == 3) {?>
16:00 - 17:00 | Poster session | } elseif($paper->event_type == 4) {?>Poster session | } elseif($paper->event_type == 5) {?>16:00 - 17:00 | Poster session |
} ?>
|
17:00 - 18:00 | Conclusions |
} elseif($paper->event_type == 2) {?>
17:00 - 18:00 | Conclusions |
} elseif($paper->event_type == 3) {?>
17:00 - 18:00 | Conclusions | } elseif($paper->event_type == 4) {?>Conclusions | } elseif($paper->event_type == 5) {?>17:00 - 18:00 | Conclusions |
} ?>