Organized by Stéphane Canu, Gérard Govaert and Mohamed Nadif
14:00-18:00
Room: Tintoretto I
https://sites.google.com/site/workshopcoclustering
Co-clustering is an important tool in a variety of scientific areas including document clustering, bioinformatics and information retrieval. Compared with the classical clustering algorithms, co-clustering algorithms have been shown to be more effective in discovering certain hidden clustering structures in data. This workshop intends to provide a forum for researchers in the field of Machine Learning, Statistics, Bioinformatics and Data Mining to discuss the above and other related topics regarding co-clustering and their applications.
14:00 – 14:15 | Welcoming and Introduction Mohamed Nadif |
} elseif($paper->event_type == 2) {?>
14:00 – 14:15 | Welcoming and Introduction Mohamed Nadif |
} elseif($paper->event_type == 3) {?>
14:00 – 14:15 | Welcoming and Introduction | } elseif($paper->event_type == 4) {?>Welcoming and Introduction | } elseif($paper->event_type == 5) {?>14:00 – 14:15 | Welcoming and Introduction Mohamed Nadif |
} ?>
|
14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner Asta Laiho, Andras Kiraly, Janos Abonyi and Attila Gyenesei |
} elseif($paper->event_type == 2) {?>
14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner Asta Laiho, Andras Kiraly, Janos Abonyi and Attila Gyenesei |
} elseif($paper->event_type == 3) {?>
14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner | } elseif($paper->event_type == 4) {?>Biclustering of high-throughput gene expression data with BiclusterMiner | } elseif($paper->event_type == 5) {?>14:15-14:45 | Biclustering of high-throughput gene expression data with BiclusterMiner Asta Laiho, Andras Kiraly, Janos Abonyi and Attila Gyenesei |
} ?>
|
14:45-15:15 | Mining Local Staircase Patterns in Noisy Data Thanh Le Van, Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt and Kathleen Marchal |
} elseif($paper->event_type == 2) {?>
14:45-15:15 | Mining Local Staircase Patterns in Noisy Data Thanh Le Van, Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt and Kathleen Marchal |
} elseif($paper->event_type == 3) {?>
14:45-15:15 | Mining Local Staircase Patterns in Noisy Data | } elseif($paper->event_type == 4) {?>Mining Local Staircase Patterns in Noisy Data | } elseif($paper->event_type == 5) {?>14:45-15:15 | Mining Local Staircase Patterns in Noisy Data Thanh Le Van, Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt and Kathleen Marchal |
} ?>
|
15:30-16:00 | Coffee Break |
} elseif($paper->event_type == 2) {?>
15:30-16:00 | Coffee Break |
} elseif($paper->event_type == 3) {?>
15:30-16:00 | Coffee Break | } elseif($paper->event_type == 4) {?>Coffee Break | } elseif($paper->event_type == 5) {?>15:30-16:00 | Coffee Break |
} ?>
|
16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks Farnoush Farhadi, Elham Hoseini, Sattar Hashemi and Ali Hamzeh |
} elseif($paper->event_type == 2) {?>
16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks Farnoush Farhadi, Elham Hoseini, Sattar Hashemi and Ali Hamzeh |
} elseif($paper->event_type == 3) {?>
16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks | } elseif($paper->event_type == 4) {?>TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks | } elseif($paper->event_type == 5) {?>16:00-16:30 | TeamFinder: A Co-clustering based Framework for Finding an Effective Team of Experts in Social Networks Farnoush Farhadi, Elham Hoseini, Sattar Hashemi and Ali Hamzeh |
} ?>
|
16:30-17:00 | Concept-based Biclustering for Internet Advertisement Dmitry Ignatov, Sergei Kuznetsov and Jonas Poelmans |
} elseif($paper->event_type == 2) {?>
16:30-17:00 | Concept-based Biclustering for Internet Advertisement Dmitry Ignatov, Sergei Kuznetsov and Jonas Poelmans |
} elseif($paper->event_type == 3) {?>
16:30-17:00 | Concept-based Biclustering for Internet Advertisement | } elseif($paper->event_type == 4) {?>Concept-based Biclustering for Internet Advertisement | } elseif($paper->event_type == 5) {?>16:30-17:00 | Concept-based Biclustering for Internet Advertisement Dmitry Ignatov, Sergei Kuznetsov and Jonas Poelmans |
} ?>
|
17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model Aurore Lomet, Gérard Govaert, and Yves Grandvalet |
} elseif($paper->event_type == 2) {?>
17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model Aurore Lomet, Gérard Govaert, and Yves Grandvalet |
} elseif($paper->event_type == 3) {?>
17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model | } elseif($paper->event_type == 4) {?>An approximation of the integrated classification likelihood for the latent block model | } elseif($paper->event_type == 5) {?>17:00-17:30 | An approximation of the integrated classification likelihood for the latent block model Aurore Lomet, Gérard Govaert, and Yves Grandvalet |
} ?>
|
17:30-18:00 | A Triclustering Approach for Time Evolving Graphs Romain Guigours, Marc Boullé and Fabrice Rossi |
} elseif($paper->event_type == 2) {?>
17:30-18:00 | A Triclustering Approach for Time Evolving Graphs Romain Guigours, Marc Boullé and Fabrice Rossi |
} elseif($paper->event_type == 3) {?>
17:30-18:00 | A Triclustering Approach for Time Evolving Graphs | } elseif($paper->event_type == 4) {?>A Triclustering Approach for Time Evolving Graphs | } elseif($paper->event_type == 5) {?>17:30-18:00 | A Triclustering Approach for Time Evolving Graphs Romain Guigours, Marc Boullé and Fabrice Rossi |
} ?>